BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 38843188)

  • 21. Predictors of suicide and suicide attempt in subway stations: a population-based ecological study.
    Niederkrotenthaler T; Sonneck G; Dervic K; Nader IW; Voracek M; Kapusta ND; Etzersdorfer E; Mittendorfer-Rutz E; Dorner T
    J Urban Health; 2012 Apr; 89(2):339-53. PubMed ID: 22318375
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Passenger and heavy vehicle collisions with pedestrians: Assessment of injury mechanisms and risk.
    Schubert A; Babisch S; Scanlon JM; Campolettano ET; Roessler R; Unger T; McMurry TL
    Accid Anal Prev; 2023 Sep; 190():107139. PubMed ID: 37320981
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Safer passenger car front shapes for pedestrians: A computational approach to reduce overall pedestrian injury risk in realistic impact scenarios.
    Li G; Yang J; Simms C
    Accid Anal Prev; 2017 Mar; 100():97-110. PubMed ID: 28129577
    [TBL] [Abstract][Full Text] [Related]  

  • 24. The impact of subway car interior design on passenger evacuation and boarding/alighting efficiency.
    He SJ; Li J; Chen WW; Ding TC; Zhi JY
    Sci Rep; 2023 Nov; 13(1):19682. PubMed ID: 37952052
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Transient variation of aerosol size distribution in an underground subway station.
    Kwon SB; Namgung HG; Jeong W; Park D; Eom JK
    Environ Monit Assess; 2016 Jun; 188(6):362. PubMed ID: 27220501
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Have pedestrian subsystem tests improved passenger car front shape?
    Li G; Wang F; Otte D; Cai Z; Simms C
    Accid Anal Prev; 2018 Jun; 115():143-150. PubMed ID: 29571012
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Machine learning approach for study on subway passenger flow.
    Park Y; Choi Y; Kim K; Yoo JK
    Sci Rep; 2022 Feb; 12(1):2754. PubMed ID: 35177774
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Evaluating the effectiveness of new-designed crosswalk markings at intersections in China considering vehicle-pedestrian interaction.
    Bian Y; Liang K; Zhao X; Li H; Yang L
    Accid Anal Prev; 2020 May; 139():105498. PubMed ID: 32179203
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A game-theoretic approach for modelling pedestrian-vehicle conflict resolutions in uncontrolled traffic environments.
    Ezzati Amini R; Abouelela M; Dhamaniya A; Friedrich B; Antoniou C
    Accid Anal Prev; 2024 Aug; 203():107604. PubMed ID: 38733807
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Collaborative optimization for train stop planning and train timetabling on high-speed railways based on passenger demand.
    Li Y; Han B; Zhao P; Yang R
    PLoS One; 2023; 18(4):e0284747. PubMed ID: 37083892
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Noise pollution survey of a two-storey intersection station in Tehran metropolitan subway system.
    Ghotbi MR; Monazzam MR; Baneshi MR; Asadi M; Fard SM
    Environ Monit Assess; 2012 Jan; 184(2):1097-106. PubMed ID: 21479557
    [TBL] [Abstract][Full Text] [Related]  

  • 32. [Distribution of airborne fungi, particulate matter and carbon dioxide in Seoul metropolitan subway stations].
    Kim KY; Park JB; Kim CN; Lee KJ
    J Prev Med Public Health; 2006 Jul; 39(4):325-30. PubMed ID: 16910306
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Where environmental microbiome meets its host: Subway and passenger microbiome relationships.
    Peimbert M; Alcaraz LD
    Mol Ecol; 2023 May; 32(10):2602-2618. PubMed ID: 35318755
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Risk assessment of COVID-19 infection for subway commuters integrating dynamic changes in passenger numbers.
    Li P; Chen X; Ma C; Zhu C; Lu W
    Environ Sci Pollut Res Int; 2022 Oct; 29(49):74715-74724. PubMed ID: 35639325
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Key techniques and risk management for the application of the Pile-Beam-Arch (PBA) excavation method: a case study of the Zhongjie subway station.
    Guan YP; Zhao W; Li SG; Zhang GB
    ScientificWorldJournal; 2014; 2014():275362. PubMed ID: 25221783
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Study on seismic vulnerability analysis of the interaction system between saturated soft soil and subway station structures.
    Cheng X; Li Q; Hai R; He X
    Sci Rep; 2023 May; 13(1):7410. PubMed ID: 37150802
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Station-Level Effects of the COVID-19 Pandemic on Subway Ridership in the Seoul Metropolitan Area.
    Jun MJ; Yun MY
    Transp Res Rec; 2023 Apr; 2677(4):802-812. PubMed ID: 37153174
    [TBL] [Abstract][Full Text] [Related]  

  • 38. An Investigation of Dynamic Responses and Head Injuries of Standing Subway Passengers during Collisions.
    Peng Y; Xu T; Hou L; Fan C; Zhou W
    Appl Bionics Biomech; 2018; 2018():1096056. PubMed ID: 30245740
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Manganese concentrations in the air of the Montreal (Canada) subway in relation to surface automobile traffic density.
    Boudia N; Halley R; Kennedy G; Lambert J; Gareau L; Zayed J
    Sci Total Environ; 2006 Jul; 366(1):143-7. PubMed ID: 16297437
    [TBL] [Abstract][Full Text] [Related]  

  • 40. An Integrated Intelligent Approach for Monitoring and Management of a Deep Foundation Pit in a Subway Station.
    Hong C; Zhang J; Chen W
    Sensors (Basel); 2022 Nov; 22(22):. PubMed ID: 36433334
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.