These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

137 related articles for article (PubMed ID: 38843467)

  • 1. On the mechanisms of brain blood flow regulation during hypoxia.
    Mascarenhas A; Braga A; Majernikova SM; Nizari S; Marletta D; Theparambil SM; Aziz Q; Marina N; Gourine AV
    J Physiol; 2024 Jun; ():. PubMed ID: 38843467
    [TBL] [Abstract][Full Text] [Related]  

  • 2. K
    Rocha MP; Campos MO; Mattos JD; Mansur DE; Rocha HNM; Secher NH; Nóbrega ACL; Fernandes IA
    J Physiol; 2020 Aug; 598(16):3343-3356. PubMed ID: 32463117
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High altitude differentially modulates potassium channel-evoked vasodilatation in pregnant human myometrial arteries.
    Fallahi S; Houck JA; Euser AG; Julian CG; Moore LG; Lorca RA
    J Physiol; 2022 Dec; 600(24):5353-5364. PubMed ID: 36286320
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dilation of retinal arterioles in response to lactate: role of nitric oxide, guanylyl cyclase, and ATP-sensitive potassium channels.
    Hein TW; Xu W; Kuo L
    Invest Ophthalmol Vis Sci; 2006 Feb; 47(2):693-9. PubMed ID: 16431969
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Control of coronary blood flow during hypoxemia.
    Tune JD
    Adv Exp Med Biol; 2007; 618():25-39. PubMed ID: 18269186
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Hypoxic regulation of the fetal cerebral circulation.
    Pearce W
    J Appl Physiol (1985); 2006 Feb; 100(2):731-8. PubMed ID: 16421280
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Adenosine and adenine nucleotides as regulators of cerebral blood flow: roles of acidosis, cell swelling, and KATP channels.
    Phillis JW
    Crit Rev Neurobiol; 2004; 16(4):237-70. PubMed ID: 15862108
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Role of nitric oxide, cyclic nucleotides, and the activation of ATP-sensitive K+ channels in the contribution of adenosine to hypoxia-induced pial artery dilation.
    Armstead WM
    J Cereb Blood Flow Metab; 1997 Jan; 17(1):100-8. PubMed ID: 8978392
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Cerebrovascular vasodilation to extraluminal acidosis occurs via combined activation of ATP-sensitive and Ca2+-activated potassium channels.
    Lindauer U; Vogt J; Schuh-Hofer S; Dreier JP; Dirnagl U
    J Cereb Blood Flow Metab; 2003 Oct; 23(10):1227-38. PubMed ID: 14526233
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hypoxemia, oxygen content, and the regulation of cerebral blood flow.
    Hoiland RL; Bain AR; Rieger MG; Bailey DM; Ainslie PN
    Am J Physiol Regul Integr Comp Physiol; 2016 Mar; 310(5):R398-413. PubMed ID: 26676248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Blockade of adenosine triphosphate-sensitive potassium channels eliminates isoflurane-induced coronary artery vasodilation.
    Cason BA; Shubayev I; Hickey RF
    Anesthesiology; 1994 Nov; 81(5):1245-55; discussion 27A-28A. PubMed ID: 7978484
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of hypoxia, anoxia, and metabolic inhibitors on KATP channels in rat femoral artery myocytes.
    Quayle JM; Turner MR; Burrell HE; Kamishima T
    Am J Physiol Heart Circ Physiol; 2006 Jul; 291(1):H71-80. PubMed ID: 16489108
    [TBL] [Abstract][Full Text] [Related]  

  • 13. H
    Patel S; Fedinec AL; Liu J; Weiss MA; Pourcyrous M; Harsono M; Parfenova H; Leffler CW
    Am J Physiol Heart Circ Physiol; 2018 Dec; 315(6):H1759-H1764. PubMed ID: 30265150
    [TBL] [Abstract][Full Text] [Related]  

  • 14. cAMP-independent dilation of coronary arterioles to adenosine : role of nitric oxide, G proteins, and K(ATP) channels.
    Hein TW; Kuo L
    Circ Res; 1999 Oct; 85(7):634-42. PubMed ID: 10506488
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP-sensitive potassium channels in the cerebral circulation.
    Rosenblum WI
    Stroke; 2003 Jun; 34(6):1547-52. PubMed ID: 12714709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Astrocytes produce nitric oxide via nitrite reduction in mitochondria to regulate cerebral blood flow during brain hypoxia.
    Christie IN; Theparambil SM; Braga A; Doronin M; Hosford PS; Brazhe A; Mascarenhas A; Nizari S; Hadjihambi A; Wells JA; Hobbs A; Semyanov A; Abramov AY; Angelova PR; Gourine AV
    Cell Rep; 2023 Dec; 42(12):113514. PubMed ID: 38041814
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Requisite roles of A2A receptors, nitric oxide, and KATP channels in retinal arteriolar dilation in response to adenosine.
    Hein TW; Yuan Z; Rosa RH; Kuo L
    Invest Ophthalmol Vis Sci; 2005 Jun; 46(6):2113-9. PubMed ID: 15914631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adenosine mediates decreased cerebral metabolic rate and increased cerebral blood flow during acute moderate hypoxia in the near-term fetal sheep.
    Blood AB; Hunter CJ; Power GG
    J Physiol; 2003 Dec; 553(Pt 3):935-45. PubMed ID: 14500776
    [TBL] [Abstract][Full Text] [Related]  

  • 19. What is the key mediator of the neurovascular coupling response?
    Hosford PS; Gourine AV
    Neurosci Biobehav Rev; 2019 Jan; 96():174-181. PubMed ID: 30481531
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of ischemia on cerebral arteriolar dilation to arterial hypoxia in piglets.
    Bari F; Louis TM; Busija DW
    Stroke; 1998 Jan; 29(1):222-7; discussion 227-8. PubMed ID: 9445354
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.