BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

363 related articles for article (PubMed ID: 3884353)

  • 1. Alpha neoprotein molecules in normal lenses from animals of different ages and in cataractous lenses.
    Manski W; Malinowski K
    Exp Eye Res; 1985 Feb; 40(2):179-90. PubMed ID: 3884353
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lens alpha-neoproteins.
    Manski W; Malinowski K
    Ophthalmic Res; 1988; 20(3):183-90. PubMed ID: 2460813
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interaction between the constituent A and B lens alpha-crystallin subunits leading to formation of alpha-neoprotein molecules.
    Manski W; Malinowski K
    Arch Biochem Biophys; 1983 Oct; 226(2):531-8. PubMed ID: 6195968
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multi-crystallin complexes exist in the water-soluble high molecular weight protein fractions of aging normal and cataractous human lenses.
    Srivastava K; Chaves JM; Srivastava OP; Kirk M
    Exp Eye Res; 2008 Oct; 87(4):356-66. PubMed ID: 18662688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Proteomic analysis of water insoluble proteins from normal and cataractous human lenses.
    Harrington V; Srivastava OP; Kirk M
    Mol Vis; 2007 Sep; 13():1680-94. PubMed ID: 17893670
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystallins in water soluble-high molecular weight protein fractions and water insoluble protein fractions in aging and cataractous human lenses.
    Harrington V; McCall S; Huynh S; Srivastava K; Srivastava OP
    Mol Vis; 2004 Jul; 10():476-89. PubMed ID: 15303090
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modification of alpha-crystallin subunit chains and formation of alpha-neoprotein molecules: role of SH groups.
    Malinowski K; Manski W
    Arch Biochem Biophys; 1984 Aug; 232(2):721-8. PubMed ID: 6380411
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Age-dependent effect of UV light in abnormal alpha neoprotein formation in the lens.
    Hibino K; Du J; Dillon J; Malinowski K
    Curr Eye Res; 1988 Nov; 7(11):1113-24. PubMed ID: 2468450
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Argpyrimidine, a blue fluorophore in human lens proteins: high levels in brunescent cataractous lenses.
    Padayatti PS; Ng AS; Uchida K; Glomb MA; Nagaraj RH
    Invest Ophthalmol Vis Sci; 2001 May; 42(6):1299-304. PubMed ID: 11328743
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Evidence for the involvement of calpain in cataractogenesis in Shumiya cataract rat (SCR).
    Inomata M; Nomura K; Takehana M; Saido TC; Kawashima S; Shumiya S
    Biochim Biophys Acta; 1997 Nov; 1362(1):11-23. PubMed ID: 9434095
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Age-related changes in normal and cataractous human lens crystallins, separated by fast-performance liquid chromatography.
    Pereira PC; Ramalho JS; Faro CJ; Mota MC
    Ophthalmic Res; 1994; 26(3):149-57. PubMed ID: 8090432
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Covalent change in alpha crystallin during human senile cataractogenesis.
    Takemoto L; Granstrom D; Kodama T; Wong R
    Biochem Biophys Res Commun; 1988 Feb; 150(3):987-95. PubMed ID: 3342073
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Existence of deamidated alphaB-crystallin fragments in normal and cataractous human lenses.
    Srivastava OP; Srivastava K
    Mol Vis; 2003 Apr; 9():110-8. PubMed ID: 12707643
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Crystallin proteins in lenses of hereditary cataractous rat, ICR/f.
    Takeuchi N; Kamei A
    Biol Pharm Bull; 2000 Mar; 23(3):283-90. PubMed ID: 10726880
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparison of d-aspartic acid contents in alpha A-crystallin from normal and age-matched cataractous human lenses.
    Fujii N; Takemoto LJ; Matsumoto S; Hiroki K; Boyle D; Akaboshi M
    Biochem Biophys Res Commun; 2000 Nov; 278(2):408-13. PubMed ID: 11097850
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A covalent change in alpha crystallin during opacification of the Emory mouse lens.
    Takemoto L; Horwitz J; Kuck J; Kuck K
    Lens Eye Toxic Res; 1989; 6(3):431-41. PubMed ID: 2486937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antisera to alpha crystallin as probes to study changes in lens proteins during human cataractogenesis.
    Takemoto L; Emmons T
    Invest Ophthalmol Vis Sci; 1990 Jul; 31(7):1348-52. PubMed ID: 2365565
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Transition metal-catalyzed oxidation of ascorbate in human cataract extracts: possible role of advanced glycation end products.
    Saxena P; Saxena AK; Cui XL; Obrenovich M; Gudipaty K; Monnier VM
    Invest Ophthalmol Vis Sci; 2000 May; 41(6):1473-81. PubMed ID: 10798665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deamidation of alpha-A crystallin from nuclei of cataractous and normal human lenses.
    Takemoto L; Boyle D
    Mol Vis; 1999 Feb; 5():2. PubMed ID: 10085374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Crystallin mRNA concentrations and distribution in lens of normal and galactosemic rats. Implications in development of sugar cataracts.
    Wen Y; Shi ST; Unakar NJ; Bekhor I
    Invest Ophthalmol Vis Sci; 1991 Apr; 32(5):1638-47. PubMed ID: 1707863
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 19.