These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 38843540)

  • 1. Deep learning-based low-dose CT simulator for non-linear reconstruction methods.
    Tunissen SAM; Moriakov N; Mikerov M; Smit EJ; Sechopoulos I; Teuwen J
    Med Phys; 2024 Sep; 51(9):6046-6060. PubMed ID: 38843540
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Image quality evaluation in deep-learning-based CT noise reduction using virtual imaging trial methods: Contrast-dependent spatial resolution.
    Zhou Z; Gong H; Hsieh S; McCollough CH; Yu L
    Med Phys; 2024 Aug; 51(8):5399-5413. PubMed ID: 38555876
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose CT images.
    Kim B; Han M; Shim H; Baek J
    Med Phys; 2019 Sep; 46(9):3906-3923. PubMed ID: 31306488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Dose reduction and image enhancement in micro-CT using deep learning.
    Muller FM; Maebe J; Vanhove C; Vandenberghe S
    Med Phys; 2023 Sep; 50(9):5643-5656. PubMed ID: 36994779
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness.
    Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ
    Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development and validation of a noise insertion algorithm for photon-counting-detector CT.
    Winfree T; McCollough C; Yu L
    Med Phys; 2024 Sep; 51(9):5943-5953. PubMed ID: 38923526
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Learning low-dose CT degradation from unpaired data with flow-based model.
    Liu X; Liang X; Deng L; Tan S; Xie Y
    Med Phys; 2022 Dec; 49(12):7516-7530. PubMed ID: 35880375
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Adaptive nonlocal means filtering based on local noise level for CT denoising.
    Li Z; Yu L; Trzasko JD; Lake DS; Blezek DJ; Fletcher JG; McCollough CH; Manduca A
    Med Phys; 2014 Jan; 41(1):011908. PubMed ID: 24387516
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Technical note: Phantom-based training framework for convolutional neural network CT noise reduction.
    Huber NR; Missert AD; Gong H; Leng S; Yu L; McCollough CH
    Med Phys; 2023 Feb; 50(2):821-830. PubMed ID: 36385704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. STEDNet: Swin transformer-based encoder-decoder network for noise reduction in low-dose CT.
    Zhu L; Han Y; Xi X; Fu H; Tan S; Liu M; Yang S; Liu C; Li L; Yan B
    Med Phys; 2023 Jul; 50(7):4443-4458. PubMed ID: 36708286
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deep learning- and partial least square regression-based model observer for a low-contrast lesion detection task in CT.
    Gong H; Yu L; Leng S; Dilger SK; Ren L; Zhou W; Fletcher JG; McCollough CH
    Med Phys; 2019 May; 46(5):2052-2063. PubMed ID: 30889282
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct estimation of the noise power spectrum from patient data to generate synthesized CT noise for denoising network training.
    Han M; Baek J
    Med Phys; 2024 Mar; 51(3):1637-1652. PubMed ID: 38289987
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthetization of high-dose images using low-dose CT scans.
    Hsieh J
    Med Phys; 2024 Jan; 51(1):113-125. PubMed ID: 37975625
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Probabilistic self-learning framework for low-dose CT denoising.
    Bai T; Wang B; Nguyen D; Jiang S
    Med Phys; 2021 May; 48(5):2258-2270. PubMed ID: 33621348
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Domain-adaptive denoising network for low-dose CT via noise estimation and transfer learning.
    Wang J; Tang Y; Wu Z; Tsui BMW; Chen W; Yang X; Zheng J; Li M
    Med Phys; 2023 Jan; 50(1):74-88. PubMed ID: 36018732
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Unpaired low-dose computed tomography image denoising using a progressive cyclical convolutional neural network.
    Li Q; Li R; Li S; Wang T; Cheng Y; Zhang S; Wu W; Zhao J; Qiang Y; Wang L
    Med Phys; 2024 Feb; 51(2):1289-1312. PubMed ID: 36841936
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Image denoising by transfer learning of generative adversarial network for dental CT.
    Hegazy MAA; Cho MH; Lee SY
    Biomed Phys Eng Express; 2020 Sep; 6(5):055024. PubMed ID: 33444255
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An efficient dual-domain deep learning network for sparse-view CT reconstruction.
    Sun C; Salimi Y; Angeliki N; Boudabbous S; Zaidi H
    Comput Methods Programs Biomed; 2024 Nov; 256():108376. PubMed ID: 39173481
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Deep learning reconstruction CT for liver metastases: low-dose dual-energy vs standard-dose single-energy.
    Lyu P; Li Z; Chen Y; Wang H; Liu N; Liu J; Zhan P; Liu X; Shang B; Wang L; Gao J
    Eur Radiol; 2024 Jan; 34(1):28-38. PubMed ID: 37532899
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Low-Dose Abdominal CT Using a Deep Learning-Based Denoising Algorithm: A Comparison with CT Reconstructed with Filtered Back Projection or Iterative Reconstruction Algorithm.
    Shin YJ; Chang W; Ye JC; Kang E; Oh DY; Lee YJ; Park JH; Kim YH
    Korean J Radiol; 2020 Mar; 21(3):356-364. PubMed ID: 32090528
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.