These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

140 related articles for article (PubMed ID: 38843731)

  • 1. Comprehensive review and comparison on pretreatment of spent lithium-ion battery.
    Gao T; Dai T; Fan N; Han Z; Gao X
    J Environ Manage; 2024 Jul; 363():121314. PubMed ID: 38843731
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Environmental impact of spent lithium ion batteries and green recycling perspectives by organic acids - A review.
    Meshram P; Mishra A; Abhilash ; Sahu R
    Chemosphere; 2020 Mar; 242():125291. PubMed ID: 31896181
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influences of plasma treatment parameters on the hydrophobicity of cathode and anode materials from spent lithium-ion batteries.
    Ren X; Bu X; Tong Z; Dong L; Ma Z; Wang J; Cao M; Qiu S
    Waste Manag; 2024 Jul; 184():120-131. PubMed ID: 38815286
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Recycling of Spent Lithium-Ion Batteries: Crucial Flotation for the Separation of Cathode and Anode Materials.
    Ma X; Ge P; Wang L; Sun W; Bu Y; Sun M; Yang Y
    Molecules; 2023 May; 28(10):. PubMed ID: 37241821
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Pyrolysis and physical separation for the recovery of spent LiFePO
    Zhong X; Liu W; Han J; Jiao F; Qin W; Liu T; Zhao C
    Waste Manag; 2019 Apr; 89():83-93. PubMed ID: 31079762
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A novel pulsated pneumatic separation with variable-diameter structure and its application in the recycling spent lithium-ion batteries.
    Zhu X; Zhang C; Feng P; Yang X; Yang X
    Waste Manag; 2021 Jul; 131():20-30. PubMed ID: 34091235
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Recycling of electrode materials from spent lithium-ion power batteries via thermal and mechanical treatments.
    Wu Z; Zhu H; Bi H; He P; Gao S
    Waste Manag Res; 2021 Apr; 39(4):607-619. PubMed ID: 33200691
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Mixed crushing and competitive leaching of all electrode material components and metal collector fluid in the spent lithium battery.
    Jiang SQ; Xu C; Li XG; Deng CZ; Yan S; Zhu XN
    J Environ Manage; 2024 May; 358():120818. PubMed ID: 38599086
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recovery of lithium and copper from anode electrode materials of spent LIBs by acidic leaching.
    Agarwal S; Dhiman S; Gupta H
    Environ Sci Pollut Res Int; 2024 May; 31(23):34249-34257. PubMed ID: 38700765
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Challenging the concept of electrochemical discharge using salt solutions for lithium-ion batteries recycling.
    Ojanen S; Lundström M; Santasalo-Aarnio A; Serna-Guerrero R
    Waste Manag; 2018 Jun; 76():242-249. PubMed ID: 29615279
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Leaching lithium from the anode electrode materials of spent lithium-ion batteries by hydrochloric acid (HCl).
    Guo Y; Li F; Zhu H; Li G; Huang J; He W
    Waste Manag; 2016 May; 51():227-233. PubMed ID: 26674969
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Opportunity and challenges in recovering and functionalizing anode graphite from spent lithium-ion batteries: A review.
    Gao Y; Zhang S; Lin S; Li Z; Chen Y; Wang C
    Environ Res; 2024 Apr; 247():118216. PubMed ID: 38242420
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Challenges to Future Development of Spent Lithium Ion Batteries Recovery from Environmental and Technological Perspectives.
    Xiao J; Li J; Xu Z
    Environ Sci Technol; 2020 Jan; 54(1):9-25. PubMed ID: 31849217
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ultra-fast recovery of cathode materials from spent LiFePO
    Zhu X; Chen C; Guo Q; Liu M; Zhang Y; Sun Z; Song H
    Waste Manag; 2023 Jul; 166():70-77. PubMed ID: 37156188
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Efficient separation of aluminum foil from mixed-type spent lithium-ion power batteries.
    Hu Z; Zhu N; Wei X; Zhang S; Li F; Wu P; Chen Y
    J Environ Manage; 2021 Nov; 298():113500. PubMed ID: 34388548
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Recovery of cathode materials and Al from spent lithium-ion batteries by ultrasonic cleaning.
    He LP; Sun SY; Song XF; Yu JG
    Waste Manag; 2015 Dec; 46():523-8. PubMed ID: 26323202
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Recovery of value-added products from cathode and anode material of spent lithium-ion batteries.
    Natarajan S; Boricha AB; Bajaj HC
    Waste Manag; 2018 Jul; 77():455-465. PubMed ID: 29706480
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A sustainable approach for selective recovery of lithium from cathode materials of spent lithium-ion batteries by induced phase transition.
    Rao F; Sun Z; Lv W; Zhang X; Guan J; Zheng X
    Waste Manag; 2023 Feb; 156():247-254. PubMed ID: 36502638
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Degradation of organic pollutants accompanied by the ultrasonic separation of the spent lithium-ion battery cathode materials.
    Huang Y; Sun M; Xu C; Hu H; Zhu S; He W
    Waste Manag Res; 2024 Jan; 42(1):74-80. PubMed ID: 37102342
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generation and detection of metal ions and volatile organic compounds (VOCs) emissions from the pretreatment processes for recycling spent lithium-ion batteries.
    Li J; Wang G; Xu Z
    Waste Manag; 2016 Jun; 52():221-7. PubMed ID: 27021697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.