These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38843731)

  • 21. Separation of cathode particles and aluminum current foil in lithium-ion battery by high-voltage pulsed discharge Part II: Prospective life cycle assessment based on experimental data.
    Kikuchi Y; Suwa I; Heiho A; Dou Y; Lim S; Namihira T; Mochidzuki K; Koita T; Tokoro C
    Waste Manag; 2021 Aug; 132():86-95. PubMed ID: 34325331
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A study on recovery strategies of graphite from mixed lithium-ion battery chemistries using froth flotation.
    Sahivirta H; Wilson BP; Lundström M; Serna-Guerrero R
    Waste Manag; 2024 May; 180():96-105. PubMed ID: 38564915
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Lithium recovery and solvent reuse from electrolyte of spent lithium-ion battery.
    Xu R; Lei S; Wang T; Yi C; Sun W; Yang Y
    Waste Manag; 2023 Jul; 167():135-140. PubMed ID: 37262939
    [TBL] [Abstract][Full Text] [Related]  

  • 24. De-agglomeration of cathode composites for direct recycling of Li-ion batteries.
    Zhan R; Payne T; Leftwich T; Perrine K; Pan L
    Waste Manag; 2020 Mar; 105():39-48. PubMed ID: 32018141
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Applicability of the reduction smelting recycling process to different types of spent lithium-ion batteries cathode materials.
    Qu G; Yang J; Wang H; Ran Y; Li B; Wei Y
    Waste Manag; 2023 Jul; 166():222-232. PubMed ID: 37196388
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Innovative application of ionic liquid to separate Al and cathode materials from spent high-power lithium-ion batteries.
    Zeng X; Li J
    J Hazard Mater; 2014 Apr; 271():50-6. PubMed ID: 24607415
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The Foreseeable Future of Spent Lithium-Ion Batteries: Advanced Upcycling for Toxic Electrolyte, Cathode, and Anode from Environmental and Technological Perspectives.
    Zhang L; Zhang Y; Xu Z; Zhu P
    Environ Sci Technol; 2023 Sep; 57(36):13270-13291. PubMed ID: 37610371
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Chemical and process mineralogical characterizations of spent lithium-ion batteries: an approach by multi-analytical techniques.
    Zhang T; He Y; Wang F; Ge L; Zhu X; Li H
    Waste Manag; 2014 Jun; 34(6):1051-8. PubMed ID: 24472715
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Comprehensive evaluation on effective leaching of critical metals from spent lithium-ion batteries.
    Gao W; Liu C; Cao H; Zheng X; Lin X; Wang H; Zhang Y; Sun Z
    Waste Manag; 2018 May; 75():477-485. PubMed ID: 29459203
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Separation of the cathode materials from the Al foil in spent lithium-ion batteries by cryogenic grinding.
    Wang H; Liu J; Bai X; Wang S; Yang D; Fu Y; He Y
    Waste Manag; 2019 May; 91():89-98. PubMed ID: 31203946
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Organics removal combined with in situ thermal-reduction for enhancing the liberation and metallurgy efficiency of LiCoO
    Zhang G; Yuan X; He Y; Wang H; Xie W; Zhang T
    Waste Manag; 2020 Sep; 115():113-120. PubMed ID: 32736031
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Upgrading anode graphite from retired lithium ion batteries via solid-phase exfoliation by mechanochemical strategy.
    Wang X; Yu H; Zhou J; Wang H
    Waste Manag; 2024 Jun; 182():102-112. PubMed ID: 38648688
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A review on management of spent lithium ion batteries and strategy for resource recycling of all components from them.
    Zhang W; Xu C; He W; Li G; Huang J
    Waste Manag Res; 2018 Feb; 36(2):99-112. PubMed ID: 29241402
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Environment-friendly technology for recovering cathode materials from spent lithium iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Bai Y
    Waste Manag Res; 2020 Aug; 38(8):911-920. PubMed ID: 32552572
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Eddy current separation for recovering aluminium and lithium-iron phosphate components of spent lithium-iron phosphate batteries.
    Bi H; Zhu H; Zu L; Gao Y; Gao S; Wu Z
    Waste Manag Res; 2019 Dec; 37(12):1217-1228. PubMed ID: 31486742
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Environment-friendly, efficient process for mechanical recovery of waste lithium iron phosphate batteries.
    Bai Y; Zhu H; Zu L; Zhang Y; Bi H
    Waste Manag Res; 2023 Oct; 41(10):1549-1558. PubMed ID: 37070218
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Environmentally-friendly lithium recycling from a spent organic li-ion battery.
    Renault S; Brandell D; Edström K
    ChemSusChem; 2014 Oct; 7(10):2859-67. PubMed ID: 25170568
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Green Recycling Methods to Treat Lithium-Ion Batteries E-Waste: A Circular Approach to Sustainability.
    Roy JJ; Rarotra S; Krikstolaityte V; Zhuoran KW; Cindy YD; Tan XY; Carboni M; Meyer D; Yan Q; Srinivasan M
    Adv Mater; 2022 Jun; 34(25):e2103346. PubMed ID: 34632652
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Recycling of LiFePO
    Chen X; Li S; Wang Y; Jiang Y; Tan X; Han W; Wang S
    Waste Manag; 2021 Dec; 136():67-75. PubMed ID: 34637980
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Separation of cathode particles and aluminum current foil in Lithium-Ion battery by high-voltage pulsed discharge Part I: Experimental investigation.
    Tokoro C; Lim S; Teruya K; Kondo M; Mochidzuki K; Namihira T; Kikuchi Y
    Waste Manag; 2021 Apr; 125():58-66. PubMed ID: 33684665
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.