These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
113 related articles for article (PubMed ID: 38844351)
41. A latitudinal diversity gradient in planktonic marine bacteria. Fuhrman JA; Steele JA; Hewson I; Schwalbach MS; Brown MV; Green JL; Brown JH Proc Natl Acad Sci U S A; 2008 Jun; 105(22):7774-8. PubMed ID: 18509059 [TBL] [Abstract][Full Text] [Related]
42. Absence of genome reduction in diverse, facultative endohyphal bacteria. Baltrus DA; Dougherty K; Arendt KR; Huntemann M; Clum A; Pillay M; Palaniappan K; Varghese N; Mikhailova N; Stamatis D; Reddy TBK; Ngan CY; Daum C; Shapiro N; Markowitz V; Ivanova N; Kyrpides N; Woyke T; Arnold AE Microb Genom; 2017 Feb; 3(2):e000101. PubMed ID: 28348879 [TBL] [Abstract][Full Text] [Related]
43. Variability of bacterial community composition on leaves between and within plant species. Izhaki I; Fridman S; Gerchman Y; Halpern M Curr Microbiol; 2013 Mar; 66(3):227-35. PubMed ID: 23143286 [TBL] [Abstract][Full Text] [Related]
44. Diversity and biogeography of selected phyllosphere bacteria with special emphasis on Methylobacterium spp. Wellner S; Lodders N; Kämpfer P Syst Appl Microbiol; 2011 Dec; 34(8):621-30. PubMed ID: 22000032 [TBL] [Abstract][Full Text] [Related]
45. Adaptations and evolution of a heritable leaf nodule symbiosis between Dioscorea sansibarensis and Orrella dioscoreae. De Meyer F; Danneels B; Acar T; Rasolomampianina R; Rajaonah MT; Jeannoda V; Carlier A ISME J; 2019 Jul; 13(7):1831-1844. PubMed ID: 30877285 [TBL] [Abstract][Full Text] [Related]
47. The patchiness of epifoliar fungi in tropical forests: host range, host abundance, and environment. Gilbert GS; Reynolds DR; Bethancourt A Ecology; 2007 Mar; 88(3):575-81. PubMed ID: 17503584 [TBL] [Abstract][Full Text] [Related]
48. Non-nodulated bacterial leaf symbiosis promotes the evolutionary success of its host plants in the coffee family (Rubiaceae). Verstraete B; Janssens S; Rønsted N Mol Phylogenet Evol; 2017 Aug; 113():161-168. PubMed ID: 28552505 [TBL] [Abstract][Full Text] [Related]
49. Bacterial leaf symbiosis in Ardisia (Myrsinoideae, Primulaceae): molecular evidence for host specificity. Lemaire B; Smets E; Dessein S Res Microbiol; 2011 Jun; 162(5):528-34. PubMed ID: 21527340 [TBL] [Abstract][Full Text] [Related]
50. Microbial community overlap between the phyllosphere and rhizosphere of three plants from Yongxing Island, South China Sea. Bao L; Cai W; Cao J; Zhang X; Liu J; Chen H; Wei Y; Zhuang X; Zhuang G; Bai Z Microbiologyopen; 2020 Jul; 9(7):e1048. PubMed ID: 32315123 [TBL] [Abstract][Full Text] [Related]
51. Plant-microbe specificity varies as a function of elevation. Cobian GM; Egan CP; Amend AS ISME J; 2019 Nov; 13(11):2778-2788. PubMed ID: 31300724 [TBL] [Abstract][Full Text] [Related]
52. Foliar bacterial communities of trembling aspen in a common garden. Mason CJ; Pfammatter JA; Holeski LM; Raffa KF Can J Microbiol; 2015 Feb; 61(2):143-9. PubMed ID: 25602743 [TBL] [Abstract][Full Text] [Related]
53. The genome analysis of Candidatus Burkholderia crenata reveals that secondary metabolism may be a key function of the Ardisia crenata leaf nodule symbiosis. Carlier A; Fehr L; Pinto-Carbó M; Schäberle T; Reher R; Dessein S; König G; Eberl L Environ Microbiol; 2016 Sep; 18(8):2507-22. PubMed ID: 26663534 [TBL] [Abstract][Full Text] [Related]
54. Streamlining and core genome conservation among highly divergent members of the SAR11 clade. Grote J; Thrash JC; Huggett MJ; Landry ZC; Carini P; Giovannoni SJ; Rappé MS mBio; 2012; 3(5):. PubMed ID: 22991429 [TBL] [Abstract][Full Text] [Related]
55. Assembly and ecological function of the root microbiome across angiosperm plant species. Fitzpatrick CR; Copeland J; Wang PW; Guttman DS; Kotanen PM; Johnson MTJ Proc Natl Acad Sci U S A; 2018 Feb; 115(6):E1157-E1165. PubMed ID: 29358405 [TBL] [Abstract][Full Text] [Related]
56. Contribution of tree species to the co-occurrence network of the leaf phyllosphere and soil bacterial community in the subtropical forests. Wang J; Shi X; Lucas-Borja ME; Guo Q; Wang L; Huang Z J Environ Manage; 2023 Oct; 343():118274. PubMed ID: 37247543 [TBL] [Abstract][Full Text] [Related]
57. Plant species shape the bacterial communities on the phyllosphere in a hyper-arid desert. Liu J; Sun X; Zuo Y; Hu Q; He X Microbiol Res; 2023 Apr; 269():127314. PubMed ID: 36724560 [TBL] [Abstract][Full Text] [Related]
58. Summer season and long-term drought increase the richness of bacteria and fungi in the foliar phyllosphere of Quercus ilex in a mixed Mediterranean forest. Peñuelas J; Rico L; Ogaya R; Jump AS; Terradas J Plant Biol (Stuttg); 2012 Jul; 14(4):565-75. PubMed ID: 22289059 [TBL] [Abstract][Full Text] [Related]
59. Prevalent genome streamlining and latitudinal divergence of planktonic bacteria in the surface ocean. Swan BK; Tupper B; Sczyrba A; Lauro FM; Martinez-Garcia M; González JM; Luo H; Wright JJ; Landry ZC; Hanson NW; Thompson BP; Poulton NJ; Schwientek P; Acinas SG; Giovannoni SJ; Moran MA; Hallam SJ; Cavicchioli R; Woyke T; Stepanauskas R Proc Natl Acad Sci U S A; 2013 Jul; 110(28):11463-8. PubMed ID: 23801761 [TBL] [Abstract][Full Text] [Related]
60. Climatic controls of decomposition drive the global biogeography of forest-tree symbioses. Steidinger BS; Crowther TW; Liang J; Van Nuland ME; Werner GDA; Reich PB; Nabuurs GJ; de-Miguel S; Zhou M; Picard N; Herault B; Zhao X; Zhang C; Routh D; Peay KG; Nature; 2019 May; 569(7756):404-408. PubMed ID: 31092941 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]