These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 38844370)
1. Deep Learning Denoising Improves CT Perfusion Image Quality in the Setting of Lower Contrast Dosing: A Feasibility Study. Mossa-Basha M; Zhu C; Pandhi T; Mendoza S; Azadbakht J; Safwat A; Homen D; Zamora C; Gnanasekaran DK; Peng R; Cen S; Duddalwar V; Alger JR; Wang DJJ AJNR Am J Neuroradiol; 2024 Oct; 45(10):1468-1474. PubMed ID: 38844370 [TBL] [Abstract][Full Text] [Related]
2. Dose reduction and image enhancement in micro-CT using deep learning. Muller FM; Maebe J; Vanhove C; Vandenberghe S Med Phys; 2023 Sep; 50(9):5643-5656. PubMed ID: 36994779 [TBL] [Abstract][Full Text] [Related]
3. Temporally downsampled cerebral CT perfusion image restoration using deep residual learning. Zhu H; Tong D; Zhang L; Wang S; Wu W; Tang H; Chen Y; Luo L; Zhu J; Li B Int J Comput Assist Radiol Surg; 2020 Feb; 15(2):193-201. PubMed ID: 31673961 [TBL] [Abstract][Full Text] [Related]
4. A performance comparison of convolutional neural network-based image denoising methods: The effect of loss functions on low-dose CT images. Kim B; Han M; Shim H; Baek J Med Phys; 2019 Sep; 46(9):3906-3923. PubMed ID: 31306488 [TBL] [Abstract][Full Text] [Related]
5. Retrospective study of deep learning to reduce noise in non-contrast head CT images. Wong KK; Cummock JS; He Y; Ghosh R; Volpi JJ; Wong STC Comput Med Imaging Graph; 2021 Dec; 94():101996. PubMed ID: 34637998 [TBL] [Abstract][Full Text] [Related]
6. Denoising Multiphase Functional Cardiac CT Angiography Using Deep Learning and Synthetic Data. Sandfort V; Willemink MJ; Codari M; Mastrodicasa D; Fleischmann D Radiol Artif Intell; 2024 Mar; 6(2):e230153. PubMed ID: 38416035 [TBL] [Abstract][Full Text] [Related]
7. STEDNet: Swin transformer-based encoder-decoder network for noise reduction in low-dose CT. Zhu L; Han Y; Xi X; Fu H; Tan S; Liu M; Yang S; Liu C; Li L; Yan B Med Phys; 2023 Jul; 50(7):4443-4458. PubMed ID: 36708286 [TBL] [Abstract][Full Text] [Related]
8. Deep Learning Denoising of Low-Dose Computed Tomography Chest Images: A Quantitative and Qualitative Image Analysis. Azour L; Hu Y; Ko JP; Chen B; Knoll F; Alpert JB; Brusca-Augello G; Mason DM; Wickstrom ML; Kwon YJF; Babb J; Liang Z; Moore WH J Comput Assist Tomogr; 2023 Mar-Apr 01; 47(2):212-219. PubMed ID: 36790870 [TBL] [Abstract][Full Text] [Related]
9. Efficient radiation dose reduction in whole-brain CT perfusion imaging using a 3D GAN: performance and clinical feasibility. Dashtbani Moghari M; Zhou L; Yu B; Young N; Moore K; Evans A; Fulton RR; Kyme AZ Phys Med Biol; 2021 Mar; 66(7):. PubMed ID: 33621965 [TBL] [Abstract][Full Text] [Related]
10. Incremental Image Noise Reduction in Coronary CT Angiography Using a Deep Learning-Based Technique with Iterative Reconstruction. Hong JH; Park EA; Lee W; Ahn C; Kim JH Korean J Radiol; 2020 Oct; 21(10):1165-1177. PubMed ID: 32729262 [TBL] [Abstract][Full Text] [Related]
11. Image quality assessment of pediatric chest and abdomen CT by deep learning reconstruction. Yoon H; Kim J; Lim HJ; Lee MJ BMC Med Imaging; 2021 Oct; 21(1):146. PubMed ID: 34629049 [TBL] [Abstract][Full Text] [Related]
12. Low Dose CT Perfusion With K-Space Weighted Image Average (KWIA). Zhao C; Martin T; Shao X; Alger JR; Duddalwar V; Wang DJJ IEEE Trans Med Imaging; 2020 Dec; 39(12):3879-3890. PubMed ID: 32746131 [TBL] [Abstract][Full Text] [Related]
13. Quantitative evaluation of deep convolutional neural network-based image denoising for low-dose computed tomography. Usui K; Ogawa K; Goto M; Sakano Y; Kyougoku S; Daida H Vis Comput Ind Biomed Art; 2021 Jul; 4(1):21. PubMed ID: 34304321 [TBL] [Abstract][Full Text] [Related]
14. Image quality evaluation in deep-learning-based CT noise reduction using virtual imaging trial methods: Contrast-dependent spatial resolution. Zhou Z; Gong H; Hsieh S; McCollough CH; Yu L Med Phys; 2024 Aug; 51(8):5399-5413. PubMed ID: 38555876 [TBL] [Abstract][Full Text] [Related]
16. Performance of a deep learning-based CT image denoising method: Generalizability over dose, reconstruction kernel, and slice thickness. Zeng R; Lin CY; Li Q; Jiang L; Skopec M; Fessler JA; Myers KJ Med Phys; 2022 Feb; 49(2):836-853. PubMed ID: 34954845 [TBL] [Abstract][Full Text] [Related]
17. Deep Learning-Based Denoising in High-Speed Portable Reflectance Confocal Microscopy. Zhao J; Jain M; Harris UG; Kose K; Curiel-Lewandrowski C; Kang D Lasers Surg Med; 2021 Aug; 53(6):880-891. PubMed ID: 33891330 [TBL] [Abstract][Full Text] [Related]
18. SDnDTI: Self-supervised deep learning-based denoising for diffusion tensor MRI. Tian Q; Li Z; Fan Q; Polimeni JR; Bilgic B; Salat DH; Huang SY Neuroimage; 2022 Jun; 253():119033. PubMed ID: 35240299 [TBL] [Abstract][Full Text] [Related]
19. Reducing the risk of hallucinations with interpretable deep learning models for low-dose CT denoising: comparative performance analysis. Patwari M; Gutjahr R; Marcus R; Thali Y; Calvarons AF; Raupach R; Maier A Phys Med Biol; 2023 Oct; 68(19):. PubMed ID: 37733068 [No Abstract] [Full Text] [Related]
20. Clinical application of four-dimensional noise reduction filtering with a similarity algorithm in dynamic myocardial computed tomography perfusion imaging. Kouchi T; Tanabe Y; Smit EJ; Kido T; Kurata A; Kouchi Y; Nishiyama H; Uetani T; Ikeda S; Yamaguchi O; Prokop M; Mochizuki T Int J Cardiovasc Imaging; 2020 Sep; 36(9):1781-1789. PubMed ID: 32399762 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]