These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
173 related articles for article (PubMed ID: 38844445)
1. Identification of potential immune-related mechanisms related to the development of multiple myeloma. Wang Y; Zhang W; Li T; Liu M; Gao M; Li X; Chen Y; Song Y; Li W; Du C; Wang F; Liu L Chin Med J (Engl); 2024 Jul; 137(13):1603-1613. PubMed ID: 38844445 [TBL] [Abstract][Full Text] [Related]
2. Identification of potential resistance mechanisms and therapeutic targets for the relapse of BCMA CAR-T therapy in relapsed/refractory multiple myeloma through single-cell sequencing. Li W; Zhang B; Cao W; Zhang W; Li T; Liu L; Xu L; Gao F; Wang Y; Wang F; Xing H; Jiang Z; Shi J; Bian Z; Song Y Exp Hematol Oncol; 2023 May; 12(1):44. PubMed ID: 37158921 [TBL] [Abstract][Full Text] [Related]
3. Human natural killer cells exposed to IL-2, IL-12, IL-18, or IL-4 differently modulate priming of naive T cells by monocyte-derived dendritic cells. Agaugué S; Marcenaro E; Ferranti B; Moretta L; Moretta A Blood; 2008 Sep; 112(5):1776-83. PubMed ID: 18579793 [TBL] [Abstract][Full Text] [Related]
4. Comprehensive Characterization of the Multiple Myeloma Immune Microenvironment Using Integrated scRNA-seq, CyTOF, and CITE-seq Analysis. Yao L; Jayasinghe RG; Lee BH; Bhasin SS; Pilcher W; Doxie DB; Gonzalez-Kozlova E; Dasari S; Fiala MA; Pita-Juarez Y; Strausbauch M; Kelly G; Thomas BE; Kumar SK; Cho HJ; Anderson E; Wendl MC; Dawson T; D'souza D; Oh ST; Cheloni G; Li Y; DiPersio JF; Rahman AH; Dhodapkar KM; Kim-Schulze S; Vij R; Vlachos IS; Mehr S; Hamilton M; Auclair D; Kourelis T; Avigan D; Dhodapkar MV; Gnjatic S; Bhasin MK; Ding L Cancer Res Commun; 2022 Oct; 2(10):1255-1265. PubMed ID: 36969740 [TBL] [Abstract][Full Text] [Related]
5. Multiple Myeloma and the Immune Microenvironment. Kawano Y; Roccaro AM; Ghobrial IM; Azzi J Curr Cancer Drug Targets; 2017; 17(9):806-818. PubMed ID: 28201978 [TBL] [Abstract][Full Text] [Related]
6. Role of cross-talk between IFN-alpha-induced monocyte-derived dendritic cells and NK cells in priming CD8+ T cell responses against human tumor antigens. Tosi D; Valenti R; Cova A; Sovena G; Huber V; Pilla L; Arienti F; Belardelli F; Parmiani G; Rivoltini L J Immunol; 2004 May; 172(9):5363-70. PubMed ID: 15100276 [TBL] [Abstract][Full Text] [Related]
8. Synergistic Antimyeloma Activity of Dendritic Cells and Pomalidomide in a Murine Myeloma Model. Vo MC; Yang S; Jung SH; Chu TH; Lee HJ; Lakshmi TJ; Park HS; Kim HJ; Lee JJ Front Immunol; 2018; 9():1798. PubMed ID: 30123221 [TBL] [Abstract][Full Text] [Related]
9. CD137 (4-1BB) stimulation leads to metabolic and functional reprogramming of human monocytes/macrophages enhancing their tumoricidal activity. Stoll A; Bruns H; Fuchs M; Völkl S; Nimmerjahn F; Kunz M; Peipp M; Mackensen A; Mougiakakos D Leukemia; 2021 Dec; 35(12):3482-3496. PubMed ID: 34021248 [TBL] [Abstract][Full Text] [Related]
10. Dendritic cells, macrophages, NK and CD8 Lucinda N; Figueiredo MM; Pessoa NL; Santos BS; Lima GK; Freitas AM; Machado AM; Kroon EG; Antonelli LR; Campos MA Virol J; 2017 Feb; 14(1):37. PubMed ID: 28222752 [TBL] [Abstract][Full Text] [Related]
11. Human Regulatory Dendritic Cells Develop From Monocytes in Response to Signals From Regulatory and Helper T Cells. Zhang X; Zheng P; Prestwood TR; Zhang H; Carmi Y; Tolentino LL; Wu N; Choi O; Winer DA; Strober S; Kang ES; Alonso MN; Engleman EG Front Immunol; 2020; 11():1982. PubMed ID: 32973804 [TBL] [Abstract][Full Text] [Related]
12. Mechanism of NK cell activation induced by coculture with dendritic cells derived from peripheral blood monocytes. Amakata Y; Fujiyama Y; Andoh A; Hodohara K; Bamba T Clin Exp Immunol; 2001 May; 124(2):214-22. PubMed ID: 11422197 [TBL] [Abstract][Full Text] [Related]
13. Bone Marrow-Derived Dendritic Cell Cultures from RAG Abdi K; Thomas LM; Laky K; Abshari M; Matzinger P; Long EO Immunohorizons; 2020 Jul; 4(7):415-419. PubMed ID: 32665300 [TBL] [Abstract][Full Text] [Related]
14. Monocytes differentiated into macrophages and dendritic cells in the presence of human IFN-λ3 or IFN-λ4 show distinct phenotypes. De M; Bhushan A; Chinnaswamy S J Leukoc Biol; 2021 Aug; 110(2):357-374. PubMed ID: 33205487 [TBL] [Abstract][Full Text] [Related]
15. Monocytes and dendritic cells in a hypoxic environment: Spotlights on chemotaxis and migration. Bosco MC; Puppo M; Blengio F; Fraone T; Cappello P; Giovarelli M; Varesio L Immunobiology; 2008; 213(9-10):733-49. PubMed ID: 18926289 [TBL] [Abstract][Full Text] [Related]
17. IFN-γ production by human natural killer cells in response to HCV-infected hepatoma cells is dependent on accessory cells. Zhang S; Saha B; Kodys K; Szabo G J Hepatol; 2013 Sep; 59(3):442-9. PubMed ID: 23665181 [TBL] [Abstract][Full Text] [Related]
18. NK cell-derived interferon-γ orchestrates cellular dynamics and the differentiation of monocytes into dendritic cells at the site of infection. Goldszmid RS; Caspar P; Rivollier A; White S; Dzutsev A; Hieny S; Kelsall B; Trinchieri G; Sher A Immunity; 2012 Jun; 36(6):1047-59. PubMed ID: 22749354 [TBL] [Abstract][Full Text] [Related]
19. Zika Virus Infection Preferentially Counterbalances Human Peripheral Monocyte and/or NK Cell Activity. Lum FM; Lee D; Chua TK; Tan JJL; Lee CYP; Liu X; Fang Y; Lee B; Yee WX; Rickett NY; Chia PY; Lim V; Leo YS; Matthews DA; Hiscox JA; Ng LFP mSphere; 2018; 3(2):. PubMed ID: 29600283 [TBL] [Abstract][Full Text] [Related]
20. Effects of monomethylfumarate on dendritic cell differentiation. Litjens NH; Rademaker M; Ravensbergen B; Thio HB; van Dissel JT; Nibbering PH Br J Dermatol; 2006 Feb; 154(2):211-7. PubMed ID: 16433787 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]