These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38844646)

  • 1. The repertoire and levels of secondary metabolites in microbial cocultures depend on the inoculation ratio: a case study involving Aspergillus terreus and Streptomyces rimosus.
    Boruta T; Englart G; Foryś M; Pawlikowska W
    Biotechnol Lett; 2024 Aug; 46(4):601-614. PubMed ID: 38844646
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Quantitative Morphological Analysis of Filamentous Microorganisms in Cocultures and Monocultures:
    Ścigaczewska A; Boruta T; Bizukojć M
    Biomolecules; 2021 Nov; 11(11):. PubMed ID: 34827738
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of the Coculture Initiation Method on the Production of Secondary Metabolites in Bioreactor Cocultures of
    Boruta T; Ścigaczewska A; Ruda A; Bizukojć M
    Molecules; 2023 Aug; 28(16):. PubMed ID: 37630296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhanced Oxytetracycline Production by
    Boruta T; Ścigaczewska A
    Molecules; 2021 Oct; 26(19):. PubMed ID: 34641580
    [TBL] [Abstract][Full Text] [Related]  

  • 5. "Microbial Wars" in a Stirred Tank Bioreactor: Investigating the Co-Cultures of
    Boruta T; Ścigaczewska A; Bizukojć M
    Front Bioeng Biotechnol; 2021; 9():713639. PubMed ID: 34660550
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evaluating the outcomes of submerged co-cultivation: production of lovastatin and other secondary metabolites by Aspergillus terreus in fungal co-cultures.
    Boruta T; Milczarek I; Bizukojc M
    Appl Microbiol Biotechnol; 2019 Jul; 103(14):5593-5605. PubMed ID: 31098686
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Co-cultivation of filamentous microorganisms in the presence of aluminum oxide microparticles.
    Boruta T; Antecka A
    Appl Microbiol Biotechnol; 2022 Sep; 106(17):5459-5477. PubMed ID: 35906994
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phosphoproteome Dynamics of Streptomyces rimosus during Submerged Growth and Antibiotic Production.
    Šarić E; Quinn GA; Nalpas N; Paradžik T; Kazazić S; Filić Ž; Šemanjski M; Herron P; Hunter I; Maček B; Vujaklija D
    mSystems; 2022 Oct; 7(5):e0019922. PubMed ID: 36094082
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of addition of elicitors on rimocidin biosynthesis in Streptomyces rimosus M527.
    Song Z; Ma Z; Bechthold A; Yu X
    Appl Microbiol Biotechnol; 2020 May; 104(10):4445-4455. PubMed ID: 32221690
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A bioprocess perspective on the production of secondary metabolites by Streptomyces in submerged co-cultures.
    Boruta T
    World J Microbiol Biotechnol; 2021 Sep; 37(10):171. PubMed ID: 34490503
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Morphological-metabolic analysis in Streptomyces rimosus microparticle-enhanced cultivations (MPEC).
    Ścigaczewska A; Boruta T; Bizukojć M
    Bioprocess Biosyst Eng; 2024 Jun; 47(6):891-902. PubMed ID: 38664238
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Oxytetracycline hyper-production through targeted genome reduction of
    Pšeničnik A; Slemc L; Avbelj M; Tome M; Šala M; Herron P; Shmatkov M; Petek M; Baebler Š; Mrak P; Hranueli D; Starčević A; Hunter IS; Petković H
    mSystems; 2024 May; 9(5):e0025024. PubMed ID: 38564716
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transposon-based identification of genes involved in the rimocidin biosynthesis in Streptomyces rimosus M527.
    Bao HY; Li HJ; Zhang YY; Bechthold A; Yu XP; Ma Z
    World J Microbiol Biotechnol; 2023 Oct; 39(12):359. PubMed ID: 37891332
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Production of secondary metabolites in stirred tank bioreactor co-cultures of
    Boruta T; Ścigaczewska A; Bizukojć M
    Front Bioeng Biotechnol; 2022; 10():1011220. PubMed ID: 36246390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sequential improvement of rimocidin production in Streptomyces rimosus M527 by introduction of cumulative drug-resistance mutations.
    Zhao Y; Song Z; Ma Z; Bechthold A; Yu X
    J Ind Microbiol Biotechnol; 2019 May; 46(5):697-708. PubMed ID: 30697650
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Identification of a gene from Streptomyces rimosus M527 negatively affecting rimocidin biosynthesis and morphological differentiation.
    Liao Z; Song Z; Xu J; Ma Z; Bechthold A; Yu X
    Appl Microbiol Biotechnol; 2020 Dec; 104(23):10191-10202. PubMed ID: 33057790
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Biology Methods in Streptomyces rimosus, a Producer of Oxytetracycline.
    Slemc L; Pikl Š; Petković H; Avbelj M
    Methods Mol Biol; 2021; 2296():303-330. PubMed ID: 33977456
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Confrontation between Penicillium rubens and Aspergillus terreus: Investigating the production of fungal secondary metabolites in submerged co-cultures.
    Boruta T; Marczyk A; Rychta K; Przydacz K; Bizukojc M
    J Biosci Bioeng; 2020 Nov; 130(5):503-513. PubMed ID: 32758403
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Metabolic studies with Streptomyces rimosus.
    GADO I; SZENTIRMAI A; STECZEK K; HORVATH I
    Acta Microbiol Acad Sci Hung; 1961; 8():291-302. PubMed ID: 13896124
    [No Abstract]   [Full Text] [Related]  

  • 20. Induced terreins production from marine red algal-derived endophytic fungus Aspergillus terreus EN-539 co-cultured with symbiotic fungus Paecilomyces lilacinus EN-531.
    Li HL; Li XM; Yang SQ; Cao J; Li YH; Wang BG
    J Antibiot (Tokyo); 2020 Feb; 73(2):108-111. PubMed ID: 31624337
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.