BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 38844663)

  • 1. Towards realizing nano-enabled precision delivery in plants.
    Lowry GV; Giraldo JP; Steinmetz NF; Avellan A; Demirer GS; Ristroph KD; Wang GJ; Hendren CO; Alabi CA; Caparco A; da Silva W; González-Gamboa I; Grieger KD; Jeon SJ; Khodakovskaya MV; Kohay H; Kumar V; Muthuramalingam R; Poffenbarger H; Santra S; Tilton RD; White JC
    Nat Nanotechnol; 2024 Jun; ():. PubMed ID: 38844663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nanotechnology in agriculture: A solution to global food insecurity in a changing climate?
    Vaidya S; Deng C; Wang Y; Zuverza-Mena N; Dimkpa C; White JC
    NanoImpact; 2024 Apr; 34():100502. PubMed ID: 38508516
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanotechnology in precision agriculture: Advancing towards sustainable crop production.
    Zain M; Ma H; Ur Rahman S; Nuruzzaman M; Chaudhary S; Azeem I; Mehmood F; Duan A; Sun C
    Plant Physiol Biochem; 2024 Jan; 206():108244. PubMed ID: 38071802
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanotechnology, a frontier in agricultural science, a novel approach in abiotic stress management and convergence with new age medicine-A review.
    Mariyam S; Upadhyay SK; Chakraborty K; Verma KK; Duhan JS; Muneer S; Meena M; Sharma RK; Ghodake G; Seth CS
    Sci Total Environ; 2024 Feb; 912():169097. PubMed ID: 38056665
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Epigenomics in stress tolerance of plants under the climate change.
    Kumar M; Rani K
    Mol Biol Rep; 2023 Jul; 50(7):6201-6216. PubMed ID: 37294468
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanobiosensors and nanoformulations in agriculture: new advances and challenges for sustainable agriculture.
    Miguel-Rojas C; Pérez-de-Luque A
    Emerg Top Life Sci; 2023 Dec; 7(2):229-238. PubMed ID: 37921102
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Unraveling the roles of modified nanomaterials in nano enabled agriculture.
    Ahmad MA; Adeel M; Shakoor N; Ali I; Ishfaq M; Haider FU; Deng X
    Plant Physiol Biochem; 2023 Sep; 202():107944. PubMed ID: 37579682
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrating nanotechnology with plant microbiome for next-generation crop health.
    Hussain M; Zahra N; Lang T; Zain M; Raza M; Shakoor N; Adeel M; Zhou H
    Plant Physiol Biochem; 2023 Mar; 196():703-711. PubMed ID: 36809731
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nanobiotechnology to advance stress resilience in plants: Current opportunities and challenges.
    Ijaz M; Khan F; Ahmed T; Noman M; Zulfiqar F; Rizwan M; Chen J; H M Siddique K; Li B
    Mater Today Bio; 2023 Oct; 22():100759. PubMed ID: 37600356
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nano hybrid fertilizers: A review on the state of the art in sustainable agriculture.
    Easwaran C; Christopher SR; Moorthy G; Mohan P; Marimuthu R; Koothan V; Nallusamy S
    Sci Total Environ; 2024 Jun; 929():172533. PubMed ID: 38649050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nano-Biotechnology in Agriculture: Use of Nanomaterials to Promote Plant Growth and Stress Tolerance.
    Zhao L; Lu L; Wang A; Zhang H; Huang M; Wu H; Xing B; Wang Z; Ji R
    J Agric Food Chem; 2020 Feb; 68(7):1935-1947. PubMed ID: 32003987
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Facile synthesis of nanomaterials as nanofertilizers: a novel way for sustainable crop production.
    Basit F; Asghar S; Ahmed T; Ijaz U; Noman M; Hu J; Liang X; Guan Y
    Environ Sci Pollut Res Int; 2022 Jul; 29(34):51281-51297. PubMed ID: 35614352
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Plant Growth Hormones and Nanomaterial Interface: Exploring the connection from development to defense.
    Kandhol N; Singh VP; White JC; Tran LP; Tripathi DK
    Plant Cell Physiol; 2023 Jan; 63(12):1840-1847. PubMed ID: 36255098
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhancement of Plant Productivity in the Post-Genomics Era.
    Thao NP; Tran LS
    Curr Genomics; 2016 Aug; 17(4):295-6. PubMed ID: 27499678
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Phytotoxicological effects of engineered nanoparticles: An emerging nanotoxicology.
    Jogaiah S; Paidi MK; Venugopal K; Geetha N; Mujtaba M; Udikeri SS; Govarthanan M
    Sci Total Environ; 2021 Dec; 801():149809. PubMed ID: 34467935
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanotechnology: an evidence-based analysis.
    Medical Advisory Secretariat
    Ont Health Technol Assess Ser; 2006; 6(19):1-43. PubMed ID: 23074489
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nano-enabled seed treatment: A new and sustainable approach to engineering climate-resilient crops.
    Zhao L; Zhou X; Kang Z; Peralta-Videa JR; Zhu YG
    Sci Total Environ; 2024 Feb; 910():168640. PubMed ID: 37989394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lignin-based nano-enabled agriculture: A mini-review.
    Gigli M; Fellet G; Pilotto L; Sgarzi M; Marchiol L; Crestini C
    Front Plant Sci; 2022; 13():976410. PubMed ID: 36407611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Advancing sustainable agriculture: a critical review of smart and eco-friendly nanomaterial applications.
    Balusamy SR; Joshi AS; Perumalsamy H; Mijakovic I; Singh P
    J Nanobiotechnology; 2023 Oct; 21(1):372. PubMed ID: 37821961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Nanotechnology in agriculture: Opportunities, toxicological implications, and occupational risks.
    Iavicoli I; Leso V; Beezhold DH; Shvedova AA
    Toxicol Appl Pharmacol; 2017 Aug; 329():96-111. PubMed ID: 28554660
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.