These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 38844760)

  • 1. Improved Highly Mobile Membrane Mimetic Model for Investigating Protein-Cholesterol Interactions.
    Lihan M; Tajkhorshid E
    J Chem Inf Model; 2024 Jun; 64(12):4822-4834. PubMed ID: 38844760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extension of the Highly Mobile Membrane Mimetic to Transmembrane Systems through Customized in Silico Solvents.
    Vermaas JV; Pogorelov TV; Tajkhorshid E
    J Phys Chem B; 2017 Apr; 121(15):3764-3776. PubMed ID: 28241729
    [TBL] [Abstract][Full Text] [Related]  

  • 3. CHARMM-GUI HMMM Builder for Membrane Simulations with the Highly Mobile Membrane-Mimetic Model.
    Qi Y; Cheng X; Lee J; Vermaas JV; Pogorelov TV; Tajkhorshid E; Park S; Klauda JB; Im W
    Biophys J; 2015 Nov; 109(10):2012-22. PubMed ID: 26588561
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of allosteric regulation of β
    Manna M; Niemelä M; Tynkkynen J; Javanainen M; Kulig W; Müller DJ; Rog T; Vattulainen I
    Elife; 2016 Nov; 5():. PubMed ID: 27897972
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of lipid composition on the structural stability of g-protein coupled receptor.
    Mahmood I; Liu X; Neya S; Hoshino T
    Chem Pharm Bull (Tokyo); 2013; 61(4):426-37. PubMed ID: 23546002
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Atomic-level description of protein-lipid interactions using an accelerated membrane model.
    Baylon JL; Vermaas JV; Muller MP; Arcario MJ; Pogorelov TV; Tajkhorshid E
    Biochim Biophys Acta; 2016 Jul; 1858(7 Pt B):1573-83. PubMed ID: 26940626
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Accelerating membrane insertion of peripheral proteins with a novel membrane mimetic model.
    Ohkubo YZ; Pogorelov TV; Arcario MJ; Christensen GA; Tajkhorshid E
    Biophys J; 2012 May; 102(9):2130-9. PubMed ID: 22824277
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Efficient Exploration of Membrane-Associated Phenomena at Atomic Resolution.
    Vermaas JV; Baylon JL; Arcario MJ; Muller MP; Wu Z; Pogorelov TV; Tajkhorshid E
    J Membr Biol; 2015 Jun; 248(3):563-82. PubMed ID: 25998378
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Partitioning of amino acids into a model membrane: capturing the interface.
    Pogorelov TV; Vermaas JV; Arcario MJ; Tajkhorshid E
    J Phys Chem B; 2014 Feb; 118(6):1481-92. PubMed ID: 24451004
    [TBL] [Abstract][Full Text] [Related]  

  • 10. G protein coupled receptor interactions with cholesterol deep in the membrane.
    Genheden S; Essex JW; Lee AG
    Biochim Biophys Acta Biomembr; 2017 Feb; 1859(2):268-281. PubMed ID: 27919726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Setting Up All-Atom Molecular Dynamics Simulations to Study the Interactions of Peripheral Membrane Proteins with Model Lipid Bilayers.
    Monje-Galvan V; Warburton L; Klauda JB
    Methods Mol Biol; 2019; 1949():325-339. PubMed ID: 30790265
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mapping the functional binding sites of cholesterol in β2-adrenergic receptor by long-time molecular dynamics simulations.
    Cang X; Du Y; Mao Y; Wang Y; Yang H; Jiang H
    J Phys Chem B; 2013 Jan; 117(4):1085-94. PubMed ID: 23298417
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microscopic view of phospholipid insertion into biological membranes.
    Vermaas JV; Tajkhorshid E
    J Phys Chem B; 2014 Feb; 118(7):1754-64. PubMed ID: 24313792
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Modeling the membrane binding mechanism of a lipid transport protein Osh4 to single membranes.
    Karmakar S; Klauda JB
    Biophys J; 2022 Apr; 121(8):1560-1575. PubMed ID: 35247338
    [TBL] [Abstract][Full Text] [Related]  

  • 15. ATP transport through VDAC and the VDAC-tubulin complex probed by equilibrium and nonequilibrium MD simulations.
    Noskov SY; Rostovtseva TK; Bezrukov SM
    Biochemistry; 2013 Dec; 52(51):9246-56. PubMed ID: 24245503
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The Structural Basis for Low Conductance in the Membrane Protein VDAC upon β-NADH Binding and Voltage Gating.
    Böhm R; Amodeo GF; Murlidaran S; Chavali S; Wagner G; Winterhalter M; Brannigan G; Hiller S
    Structure; 2020 Feb; 28(2):206-214.e4. PubMed ID: 31862297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Cholesterol modulates the dimer interface of the β₂-adrenergic receptor via cholesterol occupancy sites.
    Prasanna X; Chattopadhyay A; Sengupta D
    Biophys J; 2014 Mar; 106(6):1290-300. PubMed ID: 24655504
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Coarse-grained molecular dynamics provides insight into the interactions of lipids and cholesterol with rhodopsin.
    Horn JN; Kao TC; Grossfield A
    Adv Exp Med Biol; 2014; 796():75-94. PubMed ID: 24158802
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational investigation of cholesterol binding sites on mitochondrial VDAC.
    Weiser BP; Salari R; Eckenhoff RG; Brannigan G
    J Phys Chem B; 2014 Aug; 118(33):9852-60. PubMed ID: 25080204
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular dynamics studies of ion permeation in VDAC.
    Rui H; Lee KI; Pastor RW; Im W
    Biophys J; 2011 Feb; 100(3):602-610. PubMed ID: 21281574
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.