These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38844778)

  • 41. Parametric analysis of surfactant-aided imbibition in fractured carbonates.
    Adibhatla B; Mohanty KK
    J Colloid Interface Sci; 2008 Jan; 317(2):513-22. PubMed ID: 17961587
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Zeta potential of artificial and natural calcite in aqueous solution.
    Al Mahrouqi D; Vinogradov J; Jackson MD
    Adv Colloid Interface Sci; 2017 Feb; 240():60-76. PubMed ID: 28063520
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Investigation of crude oil properties impact on wettability alteration during low salinity water flooding using an improved geochemical model.
    Ghorbani M; Rashidi F; Mousavi-Dehghani A
    Sci Rep; 2022 Apr; 12(1):6600. PubMed ID: 35459870
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Wettability of Calcite Surfaces: Impacts of Brine Ionic Composition and Oil Phase Polarity at Elevated Temperature and Pressure Conditions.
    Xie Y; Khishvand M; Piri M
    Langmuir; 2020 Jun; 36(22):6079-6088. PubMed ID: 32388994
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Wettability alteration of oil-wet limestone using surfactant-nanoparticle formulation.
    Nwidee LN; Lebedev M; Barifcani A; Sarmadivaleh M; Iglauer S
    J Colloid Interface Sci; 2017 Oct; 504():334-345. PubMed ID: 28577448
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Dynamics of capillary imbibition when surfactant, polymer, and hot water are used as aqueous phase for oil recovery.
    Babadagli T
    J Colloid Interface Sci; 2002 Feb; 246(1):203-13. PubMed ID: 16290401
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Wettability alteration of oil-wet carbonate by silica nanofluid.
    Al-Anssari S; Barifcani A; Wang S; Maxim L; Iglauer S
    J Colloid Interface Sci; 2016 Jan; 461():435-442. PubMed ID: 26414426
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Zeta potential in oil-water-carbonate systems and its impact on oil recovery during controlled salinity water-flooding.
    Jackson MD; Al-Mahrouqi D; Vinogradov J
    Sci Rep; 2016 Nov; 6():37363. PubMed ID: 27876833
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Effects of MgO, γ-Al
    Nowrouzi I; Khaksar Manshad A; Mohammadi AH
    ACS Omega; 2022 Jul; 7(26):22161-22172. PubMed ID: 35811910
    [TBL] [Abstract][Full Text] [Related]  

  • 51. A Systematic Investigation of Polymer Influence on Core Scale Wettability Aided by Positron Emission Tomography Imaging.
    Brattekås B; Sandnes MF; Steinsbø M; Cobos JE
    Polymers (Basel); 2022 Nov; 14(22):. PubMed ID: 36433177
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Experimental Study on the Mechanism and Law of Low-Salinity Water Flooding for Enhanced Oil Recovery in Tight Sandstone Reservoirs.
    Fan P; Liu Y; He Y; Hu Y; Chao L; Wang Y; Liu L; Li J
    ACS Omega; 2024 Mar; 9(11):12665-12675. PubMed ID: 38524499
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A review of wettability alteration using surfactants in carbonate reservoirs.
    Yao Y; Wei M; Kang W
    Adv Colloid Interface Sci; 2021 Aug; 294():102477. PubMed ID: 34242888
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Imaging porosity evolution of tight sandstone during spontaneous water imbibition by X-ray Micro-CT.
    Miletić M; Küçükuysal C; Gülcan M; Garcia R
    Heliyon; 2024 Jun; 10(11):e31844. PubMed ID: 38845948
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Scaling of spontaneous imbibition data with wettability included.
    Li K
    J Contam Hydrol; 2007 Jan; 89(3-4):218-30. PubMed ID: 17081652
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Investigation on the Mechanisms of Spontaneous Imbibition at High Pressures for Tight Oil Recovery.
    Wang C; Gao H; Qi Y; Li X; Zhang R; Fan H
    ACS Omega; 2020 Jun; 5(22):12727-12734. PubMed ID: 32548456
    [TBL] [Abstract][Full Text] [Related]  

  • 57. A systematic and critical review of application of molecular dynamics simulation in low salinity water injection.
    Ghasemi M; Shafiei A; Foroozesh J
    Adv Colloid Interface Sci; 2022 Feb; 300():102594. PubMed ID: 34971915
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Experimental Investigation of Polymer-Coated Silica Nanoparticles for EOR under Harsh Reservoir Conditions of High Temperature and Salinity.
    Bila A; Torsæter O
    Nanomaterials (Basel); 2021 Mar; 11(3):. PubMed ID: 33803521
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Study on the Influence of Different Factors on Spontaneous Oil Recovery of Nanosurfactants in a Tight Reservoir.
    Wang J; Zhang J; Song L; Jiang H; Xu H; Yang K; Ke W
    ACS Omega; 2021 Aug; 6(30):19378-19385. PubMed ID: 34368524
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Spontaneous Imbibition Oil Recovery by Natural Surfactant/Nanofluid: An Experimental and Theoretical Study.
    Khoramian R; Kharrat R; Pourafshary P; Golshokooh S; Hashemi F
    Nanomaterials (Basel); 2022 Oct; 12(20):. PubMed ID: 36296753
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.