These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
168 related articles for article (PubMed ID: 38844842)
1. Development and validation of peritumoral vascular and intratumoral radiomics to predict pathologic complete responses to neoadjuvant chemotherapy in patients with triple-negative breast cancer. Xie T; Gong J; Zhao Q; Wu C; Wu S; Peng W; Gu Y BMC Med Imaging; 2024 Jun; 24(1):136. PubMed ID: 38844842 [TBL] [Abstract][Full Text] [Related]
2. Intratumoral and peritumoral radiomics for the pretreatment prediction of pathological complete response to neoadjuvant chemotherapy based on breast DCE-MRI. Braman NM; Etesami M; Prasanna P; Dubchuk C; Gilmore H; Tiwari P; Plecha D; Madabhushi A Breast Cancer Res; 2017 May; 19(1):57. PubMed ID: 28521821 [TBL] [Abstract][Full Text] [Related]
3. A preoperative radiogenomic model based on quantitative heterogeneity for predicting outcomes in triple-negative breast cancer patients who underwent neoadjuvant chemotherapy. Zhou J; Bai Y; Zhang Y; Wang Z; Sun S; Lin L; Gu Y; You C Cancer Imaging; 2024 Jul; 24(1):98. PubMed ID: 39080809 [TBL] [Abstract][Full Text] [Related]
4. Intratumoral and Peritumoral Edema Radiomics Based on Fat-Suppressed T2- Weighted Imaging for Preoperative Prediction of Triple-Negative Breast Cancer. Sun R; Hu Y; Wang X; Huang Z; Yang Y; Zhang S; Shi F; Chen L; Liu H; Wang X Curr Med Imaging; 2024; 20():e15734056293294. PubMed ID: 38644724 [TBL] [Abstract][Full Text] [Related]
5. Use of Pretreatment Perfusion MRI-based Intratumoral Heterogeneity to Predict Pathologic Response of Triple-Negative Breast Cancer to Neoadjuvant Chemoimmunotherapy. Ramtohul T; Lepagney V; Bonneau C; Jin M; Menet E; Sauge J; Laas E; Romano E; Bello-Roufai D; Mechta-Grigoriou F; Vincent Salomon A; Bidard FC; Langer A; Malhaire C; Cabel L; Brisse HJ; Tardivon A Radiology; 2024 Sep; 312(3):e240575. PubMed ID: 39225608 [TBL] [Abstract][Full Text] [Related]
6. Intratumoral and peritumoral radiomics for preoperative prediction of neoadjuvant chemotherapy effect in breast cancer based on contrast-enhanced spectral mammography. Mao N; Shi Y; Lian C; Wang Z; Zhang K; Xie H; Zhang H; Chen Q; Cheng G; Xu C; Dai Y Eur Radiol; 2022 May; 32(5):3207-3219. PubMed ID: 35066632 [TBL] [Abstract][Full Text] [Related]
7. Development and validation of a nomogram based on pretreatment dynamic contrast-enhanced MRI for the prediction of pathologic response after neoadjuvant chemotherapy for triple-negative breast cancer. Li Y; Chen Y; Zhao R; Ji Y; Li J; Zhang Y; Lu H Eur Radiol; 2022 Mar; 32(3):1676-1687. PubMed ID: 34767068 [TBL] [Abstract][Full Text] [Related]
8. Radiomics features based on automatic segmented MRI images: Prognostic biomarkers for triple-negative breast cancer treated with neoadjuvant chemotherapy. Ma M; Gan L; Liu Y; Jiang Y; Xin L; Liu Y; Qin N; Cheng Y; Liu Q; Xu L; Zhang Y; Wang X; Zhang X; Ye J; Wang X Eur J Radiol; 2022 Jan; 146():110095. PubMed ID: 34890936 [TBL] [Abstract][Full Text] [Related]
9. Association of Peritumoral Radiomics With Tumor Biology and Pathologic Response to Preoperative Targeted Therapy for HER2 (ERBB2)-Positive Breast Cancer. Braman N; Prasanna P; Whitney J; Singh S; Beig N; Etesami M; Bates DDB; Gallagher K; Bloch BN; Vulchi M; Turk P; Bera K; Abraham J; Sikov WM; Somlo G; Harris LN; Gilmore H; Plecha D; Varadan V; Madabhushi A JAMA Netw Open; 2019 Apr; 2(4):e192561. PubMed ID: 31002322 [TBL] [Abstract][Full Text] [Related]
10. MRI Radiomics for Assessment of Molecular Subtype, Pathological Complete Response, and Residual Cancer Burden in Breast Cancer Patients Treated With Neoadjuvant Chemotherapy. Choudhery S; Gomez-Cardona D; Favazza CP; Hoskin TL; Haddad TC; Goetz MP; Boughey JC Acad Radiol; 2022 Jan; 29 Suppl 1(Suppl 1):S145-S154. PubMed ID: 33160859 [TBL] [Abstract][Full Text] [Related]
11. Prediction of early clinical response to neoadjuvant chemotherapy in Triple-negative breast cancer: Incorporating Radiomics through breast MRI. Lee HJ; Lee JH; Lee JE; Na YM; Park MH; Lee JS; Lim HS Sci Rep; 2024 Sep; 14(1):21691. PubMed ID: 39289507 [TBL] [Abstract][Full Text] [Related]
12. Radiomics Analysis Based on Automatic Image Segmentation of DCE-MRI for Predicting Triple-Negative and Nontriple-Negative Breast Cancer. Ma M; Gan L; Jiang Y; Qin N; Li C; Zhang Y; Wang X Comput Math Methods Med; 2021; 2021():2140465. PubMed ID: 34422088 [TBL] [Abstract][Full Text] [Related]
13. Intratumoral and Peritumoral Radiomics Based on Functional Parametric Maps from Breast DCE-MRI for Prediction of HER-2 and Ki-67 Status. Li C; Song L; Yin J J Magn Reson Imaging; 2021 Sep; 54(3):703-714. PubMed ID: 33955619 [TBL] [Abstract][Full Text] [Related]
14. Is the presence of edema and necrosis on T2WI pretreatment breast MRI the key to predict pCR of triple negative breast cancer? Harada TL; Uematsu T; Nakashima K; Sugino T; Nishimura S; Takahashi K; Hayashi T; Tadokoro Y; Watanabe J; Nakamoto S; Ito T Eur Radiol; 2020 Jun; 30(6):3363-3370. PubMed ID: 32062698 [TBL] [Abstract][Full Text] [Related]
15. Pretreatment MR Imaging Features of Triple-Negative Breast Cancer: Association with Response to Neoadjuvant Chemotherapy and Recurrence-Free Survival. Bae MS; Shin SU; Ryu HS; Han W; Im SA; Park IA; Noh DY; Moon WK Radiology; 2016 Nov; 281(2):392-400. PubMed ID: 27195438 [TBL] [Abstract][Full Text] [Related]
16. Comparison of radiomics-based machine-learning classifiers for the pretreatment prediction of pathologic complete response to neoadjuvant therapy in breast cancer. Li X; Li C; Wang H; Jiang L; Chen M PeerJ; 2024; 12():e17683. PubMed ID: 39026540 [TBL] [Abstract][Full Text] [Related]
17. Preoperative Prediction of Axillary Lymph Node Metastasis in Breast Cancer Based on Intratumoral and Peritumoral DCE-MRI Radiomics Nomogram. Liu Y; Li X; Zhu L; Zhao Z; Wang T; Zhang X; Cai B; Li L; Ma M; Ma X; Ming J Contrast Media Mol Imaging; 2022; 2022():6729473. PubMed ID: 36051932 [TBL] [Abstract][Full Text] [Related]
18. Intratumoral and Peritumoral Analysis of Mammography, Tomosynthesis, and Multiparametric MRI for Predicting Ki-67 Level in Breast Cancer: a Radiomics-Based Study. Jiang T; Song J; Wang X; Niu S; Zhao N; Dong Y; Wang X; Luo Y; Jiang X Mol Imaging Biol; 2022 Aug; 24(4):550-559. PubMed ID: 34904187 [TBL] [Abstract][Full Text] [Related]
19. Predicting pathological complete response to neoadjuvant chemotherapy in breast cancer patients: use of MRI radiomics data from three regions with multiple machine learning algorithms. Zheng G; Peng J; Shu Z; Jin H; Han L; Yuan Z; Qin X; Hou J; He X; Gong X J Cancer Res Clin Oncol; 2024 Mar; 150(3):147. PubMed ID: 38512406 [TBL] [Abstract][Full Text] [Related]
20. Four-Dimensional Machine Learning Radiomics for the Pretreatment Assessment of Breast Cancer Pathologic Complete Response to Neoadjuvant Chemotherapy in Dynamic Contrast-Enhanced MRI. Caballo M; Sanderink WBG; Han L; Gao Y; Athanasiou A; Mann RM J Magn Reson Imaging; 2023 Jan; 57(1):97-110. PubMed ID: 35633290 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]