These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

166 related articles for article (PubMed ID: 38844966)

  • 1. iIMPACT: integrating image and molecular profiles for spatial transcriptomics analysis.
    Jiang X; Wang S; Guo L; Zhu B; Wen Z; Jia L; Xu L; Xiao G; Li Q
    Genome Biol; 2024 Jun; 25(1):147. PubMed ID: 38844966
    [TBL] [Abstract][Full Text] [Related]  

  • 2. BayeSMART: Bayesian clustering of multi-sample spatially resolved transcriptomics data.
    Guo Y; Zhu B; Tang C; Rong R; Ma Y; Xiao G; Xu L; Li Q
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39470304
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multi-modal domain adaptation for revealing spatial functional landscape from spatially resolved transcriptomics.
    Wang L; Hu Y; Xiao K; Zhang C; Shi Q; Chen L
    Brief Bioinform; 2024 May; 25(4):. PubMed ID: 38819253
    [TBL] [Abstract][Full Text] [Related]  

  • 4. STGNNks: Identifying cell types in spatial transcriptomics data based on graph neural network, denoising auto-encoder, and k-sums clustering.
    Peng L; He X; Peng X; Li Z; Zhang L
    Comput Biol Med; 2023 Nov; 166():107440. PubMed ID: 37738898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Integrating multi-modal information to detect spatial domains of spatial transcriptomics by graph attention network.
    Huo Y; Guo Y; Wang J; Xue H; Feng Y; Chen W; Li X
    J Genet Genomics; 2023 Sep; 50(9):720-733. PubMed ID: 37356752
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An interpretable Bayesian clustering approach with feature selection for analyzing spatially resolved transcriptomics data.
    Li H; Zhu B; Jiang X; Guo L; Xie Y; Xu L; Li Q
    Biometrics; 2024 Jul; 80(3):. PubMed ID: 39073775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Identifying spatial domain by adapting transcriptomics with histology through contrastive learning.
    Zeng Y; Yin R; Luo M; Chen J; Pan Z; Lu Y; Yu W; Yang Y
    Brief Bioinform; 2023 Mar; 24(2):. PubMed ID: 36781228
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Benchmarking cell-type clustering methods for spatially resolved transcriptomics data.
    Cheng A; Hu G; Li WV
    Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36410733
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hidden Markov random field models for cell-type assignment of spatially resolved transcriptomics.
    Zhong C; Tian T; Wei Z
    Bioinformatics; 2023 Nov; 39(11):. PubMed ID: 37944045
    [TBL] [Abstract][Full Text] [Related]  

  • 10. TIST: Transcriptome and Histopathological Image Integrative Analysis for Spatial Transcriptomics.
    Shan Y; Zhang Q; Guo W; Wu Y; Miao Y; Xin H; Lian Q; Gu J
    Genomics Proteomics Bioinformatics; 2022 Oct; 20(5):974-988. PubMed ID: 36549467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Inferring super-resolution tissue architecture by integrating spatial transcriptomics with histology.
    Zhang D; Schroeder A; Yan H; Yang H; Hu J; Lee MYY; Cho KS; Susztak K; Xu GX; Feldman MD; Lee EB; Furth EE; Wang L; Li M
    Nat Biotechnol; 2024 Sep; 42(9):1372-1377. PubMed ID: 38168986
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multimodal contrastive learning for spatial gene expression prediction using histology images.
    Min W; Shi Z; Zhang J; Wan J; Wang C
    Brief Bioinform; 2024 Sep; 25(6):. PubMed ID: 39471412
    [TBL] [Abstract][Full Text] [Related]  

  • 13. stAA: adversarial graph autoencoder for spatial clustering task of spatially resolved transcriptomics.
    Fang Z; Liu T; Zheng R; A J; Yin M; Li M
    Brief Bioinform; 2023 Nov; 25(1):. PubMed ID: 38189544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inferring biologically relevant molecular tissue substructures by agglomerative clustering of digitized spatial transcriptomes with multilayer.
    Moehlin J; Mollet B; Colombo BM; Mendoza-Parra MA
    Cell Syst; 2021 Jul; 12(7):694-705.e3. PubMed ID: 34159899
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Identifying spatial domains of spatially resolved transcriptomics via multi-view graph convolutional networks.
    Shi X; Zhu J; Long Y; Liang C
    Brief Bioinform; 2023 Sep; 24(5):. PubMed ID: 37544658
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Discovery of molecular features underlying the morphological landscape by integrating spatial transcriptomic data with deep features of tissue images.
    Bae S; Choi H; Lee DS
    Nucleic Acids Res; 2021 Jun; 49(10):e55. PubMed ID: 33619564
    [TBL] [Abstract][Full Text] [Related]  

  • 17. DGSIST: Clustering spatial transcriptome data based on deep graph structure Infomax.
    Xiu YH; Sun SL; Zhou BW; Wan Y; Tang H; Long HX
    Methods; 2024 Nov; 231():226-236. PubMed ID: 39413889
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Computational solutions for spatial transcriptomics.
    Kleino I; FrolovaitÄ— P; Suomi T; Elo LL
    Comput Struct Biotechnol J; 2022; 20():4870-4884. PubMed ID: 36147664
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complete spatially resolved gene expression is not necessary for identifying spatial domains.
    Lin S; Cui Y; Zhao F; Yang Z; Song J; Yao J; Zhao Y; Qian BZ; Zhao Y; Yuan Z
    Cell Genom; 2024 Jun; 4(6):100565. PubMed ID: 38781966
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Probabilistic embedding, clustering, and alignment for integrating spatial transcriptomics data with PRECAST.
    Liu W; Liao X; Luo Z; Yang Y; Lau MC; Jiao Y; Shi X; Zhai W; Ji H; Yeong J; Liu J
    Nat Commun; 2023 Jan; 14(1):296. PubMed ID: 36653349
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.