These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

115 related articles for article (PubMed ID: 38844997)

  • 41. A knowledge graph-based data harmonization framework for secondary data reuse.
    Abad-Navarro F; Martínez-Costa C
    Comput Methods Programs Biomed; 2024 Jan; 243():107918. PubMed ID: 37981455
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Adverse Drug Event Prediction Using Noisy Literature-Derived Knowledge Graphs: Algorithm Development and Validation.
    Dasgupta S; Jayagopal A; Jun Hong AL; Mariappan R; Rajan V
    JMIR Med Inform; 2021 Oct; 9(10):e32730. PubMed ID: 34694230
    [TBL] [Abstract][Full Text] [Related]  

  • 43. The effect of motor context on semantic processing: A TMS study.
    De Marco D; De Stefani E; Bernini D; Gentilucci M
    Neuropsychologia; 2018 Jun; 114():243-250. PubMed ID: 29729959
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Compound fracture: the role of semantic transparency and morphological headedness.
    Libben G; Gibson M; Yoon YB; Sandra D
    Brain Lang; 2003 Jan; 84(1):50-64. PubMed ID: 12537951
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Learning Relationship-Enhanced Semantic Graph for Fine-Grained Image-Text Matching.
    Liu X; He Y; Cheung YM; Xu X; Wang N
    IEEE Trans Cybern; 2024 Feb; 54(2):948-961. PubMed ID: 35724298
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Aligning Semantic in Brain and Language: A Curriculum Contrastive Method for Electroencephalography-to-Text Generation.
    Feng X; Feng X; Qin B; Liu T
    IEEE Trans Neural Syst Rehabil Eng; 2023; 31():3874-3883. PubMed ID: 37698960
    [TBL] [Abstract][Full Text] [Related]  

  • 47. An effective knowledge graph entity alignment model based on multiple information.
    Zhu B; Bao T; Han R; Cui H; Han J; Liu L; Peng T
    Neural Netw; 2023 May; 162():83-98. PubMed ID: 36893693
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Knowledge graph embedding with shared latent semantic units.
    Zhang Z; Zhuang F; Qu M; Niu ZY; Xiong H; He Q
    Neural Netw; 2021 Jul; 139():140-148. PubMed ID: 33706227
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Knowledge representation and management: benefits and challenges of the semantic web for the fields of KRM and NLP.
    Rassinoux AM
    Yearb Med Inform; 2011; 6():121-4. PubMed ID: 21938336
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The varying nature of semantic effects in working memory.
    Kowialiewski B; Majerus S
    Cognition; 2020 Sep; 202():104278. PubMed ID: 32454286
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Using Character-Level and Entity-Level Representations to Enhance Bidirectional Encoder Representation From Transformers-Based Clinical Semantic Textual Similarity Model: ClinicalSTS Modeling Study.
    Xiong Y; Chen S; Chen Q; Yan J; Tang B
    JMIR Med Inform; 2020 Dec; 8(12):e23357. PubMed ID: 33372664
    [TBL] [Abstract][Full Text] [Related]  

  • 52. SSWAP: A Simple Semantic Web Architecture and Protocol for semantic web services.
    Gessler DD; Schiltz GS; May GD; Avraham S; Town CD; Grant D; Nelson RT
    BMC Bioinformatics; 2009 Sep; 10():309. PubMed ID: 19775460
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Explaining protein-protein interactions with knowledge graph-based semantic similarity.
    Sousa RT; Silva S; Pesquita C
    Comput Biol Med; 2024 Mar; 170():108076. PubMed ID: 38308873
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Attention during natural vision warps semantic representation across the human brain.
    Çukur T; Nishimoto S; Huth AG; Gallant JL
    Nat Neurosci; 2013 Jun; 16(6):763-70. PubMed ID: 23603707
    [TBL] [Abstract][Full Text] [Related]  

  • 55. edge2vec: Representation learning using edge semantics for biomedical knowledge discovery.
    Gao Z; Fu G; Ouyang C; Tsutsui S; Liu X; Yang J; Gessner C; Foote B; Wild D; Ding Y; Yu Q
    BMC Bioinformatics; 2019 Jun; 20(1):306. PubMed ID: 31238875
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Prototypical Graph Contrastive Learning.
    Lin S; Liu C; Zhou P; Hu ZY; Wang S; Zhao R; Zheng Y; Lin L; Xing E; Liang X
    IEEE Trans Neural Netw Learn Syst; 2024 Feb; 35(2):2747-2758. PubMed ID: 35895656
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Multi-faceted semantic clustering with text-derived phenotypes.
    Slater K; Williams JA; Karwath A; Fanning H; Ball S; Schofield PN; Hoehndorf R; Gkoutos GV
    Comput Biol Med; 2021 Nov; 138():104904. PubMed ID: 34600327
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Interpreting vision and language generative models with semantic visual priors.
    Cafagna M; Rojas-Barahona LM; van Deemter K; Gatt A
    Front Artif Intell; 2023; 6():1220476. PubMed ID: 37818428
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Neuro-symbolic representation learning on biological knowledge graphs.
    Alshahrani M; Khan MA; Maddouri O; Kinjo AR; Queralt-Rosinach N; Hoehndorf R
    Bioinformatics; 2017 Sep; 33(17):2723-2730. PubMed ID: 28449114
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Characterization of methods for mechanistic inference of the gut microbiome in disease.
    Santangelo B; Hunter L; Lozupone C
    bioRxiv; 2023 Dec; ():. PubMed ID: 38076987
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.