BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 38845097)

  • 1. AutoESDCas: A Web-Based Tool for the Whole-Workflow Editing Sequence Design for Microbial Genome Editing Based on the CRISPR/Cas System.
    Yang C; Yang Y; Chu G; Wang R; Li H; Mao Y; Wang M; Zhang J; Liao X; Ma H
    ACS Synth Biol; 2024 Jun; 13(6):1737-1749. PubMed ID: 38845097
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CRISPR-Enabled Tools for Engineering Microbial Genomes and Phenotypes.
    Tarasava K; Oh EJ; Eckert CA; Gill RT
    Biotechnol J; 2018 Sep; 13(9):e1700586. PubMed ID: 29917318
    [TBL] [Abstract][Full Text] [Related]  

  • 3. pgRNAFinder: a web-based tool to design distance independent paired-gRNA.
    Xiong Y; Xie X; Wang Y; Ma W; Liang P; Songyang Z; Dai Z
    Bioinformatics; 2017 Nov; 33(22):3642-3644. PubMed ID: 28961776
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Web-Based CRISPR Toolkits: Cas-OFFinder, Cas-Designer, and Cas-Analyzer.
    Hwang GH; Kim JS; Bae S
    Methods Mol Biol; 2021; 2162():23-33. PubMed ID: 32926375
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Miniature CRISPR-Cas12f1-Mediated Single-Nucleotide Microbial Genome Editing Using 3'-Truncated sgRNA.
    Lee HJ; Kim HJ; Lee SJ
    CRISPR J; 2023 Feb; 6(1):52-61. PubMed ID: 36576897
    [TBL] [Abstract][Full Text] [Related]  

  • 6. AutoESD: a web tool for automatic editing sequence design for genetic manipulation of microorganisms.
    Yang Y; Mao Y; Wang R; Li H; Liu Y; Cheng H; Shi Z; Wang Y; Wang M; Zheng P; Liao X; Ma H
    Nucleic Acids Res; 2022 Jul; 50(W1):W75-W82. PubMed ID: 35639727
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mismatch Intolerance of 5'-Truncated sgRNAs in CRISPR/Cas9 Enables Efficient Microbial Single-Base Genome Editing.
    Lee HJ; Kim HJ; Lee SJ
    Int J Mol Sci; 2021 Jun; 22(12):. PubMed ID: 34208669
    [TBL] [Abstract][Full Text] [Related]  

  • 8. WheatCRISPR: a web-based guide RNA design tool for CRISPR/Cas9-mediated genome editing in wheat.
    Cram D; Kulkarni M; Buchwaldt M; Rajagopalan N; Bhowmik P; Rozwadowski K; Parkin IAP; Sharpe AG; Kagale S
    BMC Plant Biol; 2019 Nov; 19(1):474. PubMed ID: 31694550
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR-GRANT: a cross-platform graphical analysis tool for high-throughput CRISPR-based genome editing evaluation.
    Fu H; Shan C; Kang F; Yu L; Li Z; Yin Y
    BMC Bioinformatics; 2023 May; 24(1):219. PubMed ID: 37254060
    [TBL] [Abstract][Full Text] [Related]  

  • 10. GREPore-seq: A Robust Workflow to Detect Changes After Gene Editing Through Long-range PCR and Nanopore Sequencing.
    Quan ZJ; Li SA; Yang ZX; Zhao JJ; Li GH; Zhang F; Wen W; Cheng T; Zhang XB
    Genomics Proteomics Bioinformatics; 2023 Dec; 21(6):1221-1236. PubMed ID: 35752289
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Enhanced guide-RNA design and targeting analysis for precise CRISPR genome editing of single and consortia of industrially relevant and non-model organisms.
    Mendoza BJ; Trinh CT
    Bioinformatics; 2018 Jan; 34(1):16-23. PubMed ID: 28968798
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Web-based design and analysis tools for CRISPR base editing.
    Hwang GH; Park J; Lim K; Kim S; Yu J; Yu E; Kim ST; Eils R; Kim JS; Bae S
    BMC Bioinformatics; 2018 Dec; 19(1):542. PubMed ID: 30587106
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Advances in Accurate Microbial Genome-Editing CRISPR Technologies.
    Lee HJ; Lee SJ
    J Microbiol Biotechnol; 2021 Jul; 31(7):903-911. PubMed ID: 34261850
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Application of CRISPR/Cas System in the Metabolic Engineering of Small Molecules.
    Singh R; Chandel S; Ghosh A; Dey D; Chakravarti R; Roy S; Ravichandiran V; Ghosh D
    Mol Biotechnol; 2021 Jun; 63(6):459-476. PubMed ID: 33774733
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Computational Tools and Resources for CRISPR/Cas Genome Editing.
    Li C; Chu W; Gill RA; Sang S; Shi Y; Hu X; Yang Y; Zaman QU; Zhang B
    Genomics Proteomics Bioinformatics; 2023 Feb; 21(1):108-126. PubMed ID: 35341983
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Endogenous CRISPR-Cas mediated in situ genome editing: State-of-the-art and the road ahead for engineering prokaryotes.
    Liu Z; Liu J; Yang Z; Zhu L; Zhu Z; Huang H; Jiang L
    Biotechnol Adv; 2023 Nov; 68():108241. PubMed ID: 37633620
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CRISPR-detector: fast and accurate detection, visualization, and annotation of genome-wide mutations induced by genome editing events.
    Huang L; Wang D; Chen H; Hu J; Dai X; Liu C; Li A; Shen X; Qi C; Sun H; Zhang D; Chen T; Jiang Y
    J Genet Genomics; 2023 Aug; 50(8):563-572. PubMed ID: 37003351
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Design of Guide RNA for CRISPR/Cas Plant Genome Editing].
    Gerashchenkov GA; Rozhnova NA; Kuluev BR; Kiryanova OY; Gumerova GR; Knyazev AV; Vershinina ZR; Mikhailova EV; Chemeris DA; Matniyazov RT; Baimiev AK; Gubaidullin IM; Baimiev AK; Chemeris AV
    Mol Biol (Mosk); 2020; 54(1):29-50. PubMed ID: 32163387
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cloud-Based Design of Short Guide RNA (sgRNA) Libraries for CRISPR Experiments.
    Heigwer F; Boutros M
    Methods Mol Biol; 2021; 2162():3-22. PubMed ID: 32926374
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [sgRNA design for the CRISPR/Cas9 system and evaluation of its off-target effects].
    Xie SS; Zhang Y; Zhang LS; Li GL; Zhao CZ; Ni P; Zhao SH
    Yi Chuan; 2015 Nov; 37(11):1125-36. PubMed ID: 26582526
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.