BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 38845098)

  • 1. Phytochelatins Bind Zn(II) with Micro- to Picomolar Affinities without the Formation of Binuclear Complexes, Exhibiting Zinc Buffering and Muffling Rather than Storing Functions.
    Łuczkowski M; Leszczyńska W; Wątły J; Clemens S; Krężel A
    Inorg Chem; 2024 Jun; 63(24):10915-10931. PubMed ID: 38845098
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Phytochelatins as a Dynamic System for Cd(II) Buffering from the Micro- to Femtomolar Range.
    Wątły J; Łuczkowski M; Padjasek M; Krężel A
    Inorg Chem; 2021 Apr; 60(7):4657-4675. PubMed ID: 33736430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cd
    Jacquart A; Brayner R; El Hage Chahine JM; Ha-Duong NT
    Chem Biol Interact; 2017 Apr; 267():2-10. PubMed ID: 27613484
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamics of Cd2+ and Zn2+ binding by the phytochelatin (gamma-Glu-Cys)4-Gly and its precursor glutathione.
    Chekmeneva E; Prohens R; Díaz-Cruz JM; Ariño C; Esteban M
    Anal Biochem; 2008 Apr; 375(1):82-9. PubMed ID: 18249182
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Development of affinity bead-based in vitro metal-ligand binding assay reveals dominant cadmium affinity of thiol-rich small peptides phytochelatins beyond glutathione.
    Uraguchi S; Nagai K; Naruse F; Otsuka Y; Ohshiro Y; Nakamura R; Takanezawa Y; Kiyono M
    Metallomics; 2021 Dec; 13(12):. PubMed ID: 34850059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. From cysteine to longer chain thiols: thermodynamic analysis of cadmium binding by phytochelatins and their fragments.
    Chekmeneva E; Gusmão R; Díaz-Cruz JM; Ariño C; Esteban M
    Metallomics; 2011 Aug; 3(8):838-46. PubMed ID: 21687859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crosstalk of the structural and zinc buffering properties of mammalian metallothionein-2.
    Drozd A; Wojewska D; Peris-Díaz MD; Jakimowicz P; Krężel A
    Metallomics; 2018 Apr; 10(4):595-613. PubMed ID: 29561927
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ag(I)-binding to phytochelatins.
    Mehra RK; Tran K; Scott GW; Mulchandani P; Saini SS
    J Inorg Biochem; 1996 Feb; 61(2):125-42. PubMed ID: 8576707
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficiency of cadmium chelation by phytochelatins in Nitzschia palea (Kützing) W. Smith.
    Figueira E; Freitas R; Guasch H; Almeida SF
    Ecotoxicology; 2014 Mar; 23(2):285-92. PubMed ID: 24399171
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Differentiated Zn(II) binding affinities in animal, plant, and bacterial metallothioneins define their zinc buffering capacity at physiological pZn.
    Mosna K; Jurczak K; Krężel A
    Metallomics; 2023 Oct; 15(10):. PubMed ID: 37804185
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Characterization of lead induced metal-phytochelatin complexes in Chlamydomonas reinhardtii.
    Scheidegger C; Sigg L; Behra R
    Environ Toxicol Chem; 2011 Nov; 30(11):2546-52. PubMed ID: 21898554
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Competitive binding of Cd and Zn with the phytochelatin (gamma-Glu-Cys)4-Gly: comparative study by mass spectrometry, voltammetry-multivariate curve resolution, and isothermal titration calorimetry.
    Chekmeneva E; Prohens R; Díaz-Cruz JM; Ariño C; Esteban M
    Environ Sci Technol; 2008 Apr; 42(8):2860-6. PubMed ID: 18497135
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Characterization of the phytochelatins and their derivatives in rice exposed to cadmium based on high-performance liquid chromatography coupled with data-dependent hybrid linear ion trap orbitrap mass spectrometry.
    Mou RX; Cao ZY; Lin XY; Wu L; Cao ZZ; Zhu ZW; Chen MX
    Rapid Commun Mass Spectrom; 2016 Aug; 30(16):1891-900. PubMed ID: 27426698
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phytochelatin-metal(loid) transport into vacuoles shows different substrate preferences in barley and Arabidopsis.
    Song WY; Mendoza-Cózatl DG; Lee Y; Schroeder JI; Ahn SN; Lee HS; Wicker T; Martinoia E
    Plant Cell Environ; 2014 May; 37(5):1192-201. PubMed ID: 24313707
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Metal-binding properties of phytochelatin-related peptides.
    Satofuka H; Fukui T; Takagi M; Atomi H; Imanaka T
    J Inorg Biochem; 2001 Sep; 86(2-3):595-602. PubMed ID: 11566332
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Phytochelatin synthesis is essential for the detoxification of excess zinc and contributes significantly to the accumulation of zinc.
    Tennstedt P; Peisker D; Böttcher C; Trampczynska A; Clemens S
    Plant Physiol; 2009 Feb; 149(2):938-48. PubMed ID: 19074629
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Differences in the binding modes of phytochelatin to cadmium(II) and zinc(II) ions.
    Kobayashi R; Yoshimura E
    Biol Trace Elem Res; 2006; 114(1-3):313-8. PubMed ID: 17206012
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Metal binding affinities of Arabidopsis zinc and copper transporters: selectivities match the relative, but not the absolute, affinities of their amino-terminal domains.
    Zimmermann M; Clarke O; Gulbis JM; Keizer DW; Jarvis RS; Cobbett CS; Hinds MG; Xiao Z; Wedd AG
    Biochemistry; 2009 Dec; 48(49):11640-54. PubMed ID: 19883117
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytochelatin production in freshwater algae Stigeoclonium in response to heavy metals contained in mining water; effects of some environmental factors.
    Pawlik-Skowrońska B
    Aquat Toxicol; 2001 May; 52(3-4):241-9. PubMed ID: 11239685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and stability of phytochelatins induced by cadmium and lead in the marine diatom Phaeodactylum tricornutum.
    Morelli E; Scarano G
    Mar Environ Res; 2001 Oct; 52(4):383-95. PubMed ID: 11695656
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.