These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

127 related articles for article (PubMed ID: 38845136)

  • 1. Bait and Cleave: Exosite-Binding Peptides on Quantum Dots Selectively Accelerate Protease Activity for Sensing with Enhanced Sensitivity.
    Krause KD; Rees K; Darwish GH; Bernal-Escalante J; Algar WR
    ACS Nano; 2024 Jul; 18(26):17018-17030. PubMed ID: 38845136
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mimicking Cell Surface Enhancement of Protease Activity on the Surface of a Quantum Dot Nanoparticle.
    Jeen T; Algar WR
    Bioconjug Chem; 2018 Nov; 29(11):3783-3792. PubMed ID: 30362700
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantitative measurement of proteolytic rates with quantum dot-peptide substrate conjugates and Förster resonance energy transfer.
    Wu M; Petryayeva E; Medintz IL; Algar WR
    Methods Mol Biol; 2014; 1199():215-39. PubMed ID: 25103812
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Optimization and Changes in the Mode of Proteolytic Turnover of Quantum Dot-Peptide Substrate Conjugates through Moderation of Interfacial Adsorption.
    Petryayeva E; Jeen T; Algar WR
    ACS Appl Mater Interfaces; 2017 Sep; 9(36):30359-30372. PubMed ID: 28846381
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Assembly of a concentric Förster resonance energy transfer relay on a quantum dot scaffold: characterization and application to multiplexed protease sensing.
    Algar WR; Ancona MG; Malanoski AP; Susumu K; Medintz IL
    ACS Nano; 2012 Dec; 6(12):11044-58. PubMed ID: 23215458
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Acceleration of proteolytic activity associated with selection of thiol ligand coatings on quantum dots.
    Wu M; Algar WR
    ACS Appl Mater Interfaces; 2015 Feb; 7(4):2535-45. PubMed ID: 25607728
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessing the Steric Impact of Surface Ligands on the Proteolytic Turnover of Quantum Dot-Peptide Conjugates.
    Krause KD; Rees K; Algar WR
    ACS Appl Mater Interfaces; 2023 Dec; ():. PubMed ID: 38047551
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Identification of protease exosite-interacting peptides that enhance substrate cleavage kinetics.
    Jabaiah AM; Getz JA; Witkowski WA; Hardy JA; Daugherty PS
    Biol Chem; 2012 Sep; 393(9):933-41. PubMed ID: 22944693
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multiplexed tracking of protease activity using a single color of quantum dot vector and a time-gated Förster resonance energy transfer relay.
    Algar WR; Malanoski AP; Susumu K; Stewart MH; Hildebrandt N; Medintz IL
    Anal Chem; 2012 Nov; 84(22):10136-46. PubMed ID: 23128345
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Quantum dot-based concentric FRET configuration for the parallel detection of protease activity and concentration.
    Wu M; Petryayeva E; Algar WR
    Anal Chem; 2014 Nov; 86(22):11181-8. PubMed ID: 25361050
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Developing a capillary electrophoresis based method for dynamically monitoring enzyme cleavage activity using quantum dots-peptide assembly.
    Wang J; Fan J; Liu L; Ding S; Liu X; Wang J; Gao L; Chattopadhaya S; Miao P; Xia J; Qiu L; Jiang P
    Electrophoresis; 2017 Oct; 38(19):2530-2535. PubMed ID: 28683171
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Multiplex sensing of protease and kinase enzyme activity via orthogonal coupling of quantum dot-peptide conjugates.
    Lowe SB; Dick JA; Cohen BE; Stevens MM
    ACS Nano; 2012 Jan; 6(1):851-7. PubMed ID: 22148227
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quantum Dot-Peptide Conjugates as Energy Transfer Probes for Sensing the Proteolytic Activity of Matrix Metalloproteinase-14.
    Jin Z; Dridi N; Palui G; Palomo V; Jokerst JV; Dawson PE; Sang QA; Mattoussi H
    Anal Chem; 2023 Feb; 95(5):2713-2722. PubMed ID: 36705737
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing.
    Algar WR; Wegner D; Huston AL; Blanco-Canosa JB; Stewart MH; Armstrong A; Dawson PE; Hildebrandt N; Medintz IL
    J Am Chem Soc; 2012 Jan; 134(3):1876-91. PubMed ID: 22220737
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and Characterization of Quantum Dot-Peptide Conjugates Based on Polyhistidine Tags.
    Krause KD; Tsai HY; Rees K; Kim H; Algar WR
    Methods Mol Biol; 2021; 2355():175-218. PubMed ID: 34386960
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detecting kallikrein proteolytic activity with peptide-quantum dot nanosensors.
    Breger JC; Sapsford KE; Ganek J; Susumu K; Stewart MH; Medintz IL
    ACS Appl Mater Interfaces; 2014 Jul; 6(14):11529-35. PubMed ID: 25003700
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multifunctional Concentric FRET-Quantum Dot Probes for Tracking and Imaging of Proteolytic Activity.
    Massey M; Li JJ; Algar WR
    Methods Mol Biol; 2017; 1530():63-97. PubMed ID: 28150196
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Single-step bioassays in serum and whole blood with a smartphone, quantum dots and paper-in-PDMS chips.
    Petryayeva E; Algar WR
    Analyst; 2015 Jun; 140(12):4037-45. PubMed ID: 25924885
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Energy transfer-based multiplexed assay of proteases by using gold nanoparticle and quantum dot conjugates on a surface.
    Kim YP; Oh YH; Oh E; Ko S; Han MK; Kim HS
    Anal Chem; 2008 Jun; 80(12):4634-41. PubMed ID: 18457412
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Proteolytic activity monitored by fluorescence resonance energy transfer through quantum-dot-peptide conjugates.
    Medintz IL; Clapp AR; Brunel FM; Tiefenbrunn T; Uyeda HT; Chang EL; Deschamps JR; Dawson PE; Mattoussi H
    Nat Mater; 2006 Jul; 5(7):581-9. PubMed ID: 16799548
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.