BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

104 related articles for article (PubMed ID: 38845200)

  • 1. Confinement energy landscape classification reveals membrane receptor nano-organization mechanisms.
    Yu C; Richly M; Hoang TT; El Beheiry M; Türkcan S; Masson JB; Alexandrou A; Bouzigues CI
    Biophys J; 2024 Jun; ():. PubMed ID: 38845200
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Macromolecular crowding: chemistry and physics meet biology (Ascona, Switzerland, 10-14 June 2012).
    Foffi G; Pastore A; Piazza F; Temussi PA
    Phys Biol; 2013 Aug; 10(4):040301. PubMed ID: 23912807
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probing membrane protein interactions with their lipid raft environment using single-molecule tracking and Bayesian inference analysis.
    Türkcan S; Richly MU; Alexandrou A; Masson JB
    PLoS One; 2013; 8(1):e53073. PubMed ID: 23301023
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Observing the confinement potential of bacterial pore-forming toxin receptors inside rafts with nonblinking Eu(3+)-doped oxide nanoparticles.
    Türkcan S; Masson JB; Casanova D; Mialon G; Gacoin T; Boilot JP; Popoff MR; Alexandrou A
    Biophys J; 2012 May; 102(10):2299-308. PubMed ID: 22677383
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Cholesterol dictates the freedom of EGF receptors and HER2 in the plane of the membrane.
    Orr G; Hu D; Ozçelik S; Opresko LK; Wiley HS; Colson SD
    Biophys J; 2005 Aug; 89(2):1362-73. PubMed ID: 15908575
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bayesian decision tree for the classification of the mode of motion in single-molecule trajectories.
    Türkcan S; Masson JB
    PLoS One; 2013; 8(12):e82799. PubMed ID: 24376584
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Agrin triggers the clustering of raft-associated acetylcholine receptors through actin cytoskeleton reorganization.
    Cartaud A; Stetzkowski-Marden F; Maoui A; Cartaud J
    Biol Cell; 2011 Jun; 103(6):287-301. PubMed ID: 21524273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energetic modeling and single-molecule verification of dynamic regulation on receptor complexes by actin corrals and lipid raft domains.
    Lin CY; Huang JY; Lo LW
    J Chem Phys; 2014 Dec; 141(21):215102. PubMed ID: 25481171
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mesoscale organization of domains in the plasma membrane - beyond the lipid raft.
    Lu SM; Fairn GD
    Crit Rev Biochem Mol Biol; 2018 Apr; 53(2):192-207. PubMed ID: 29457544
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Receptor displacement in the cell membrane by hydrodynamic force amplification through nanoparticles.
    Türkcan S; Richly MU; Bouzigues CI; Allain JM; Alexandrou A
    Biophys J; 2013 Jul; 105(1):116-26. PubMed ID: 23823230
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Formation of lipid raft nanodomains in homogeneous ternary lipid mixture of POPC/DPSM/cholesterol: Theoretical insights.
    Ho TH; Nguyen TT; Huynh LK
    Biochim Biophys Acta Biomembr; 2022 Nov; 1864(11):184027. PubMed ID: 35995208
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Sphingomyelin and cholesterol: from membrane biophysics and rafts to potential medical applications.
    Barenholz Y
    Subcell Biochem; 2004; 37():167-215. PubMed ID: 15376621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Heterogeneous nanoscopic lipid diffusion in the live cell membrane and its dependency on cholesterol.
    Chai YJ; Cheng CY; Liao YH; Lin CH; Hsieh CL
    Biophys J; 2022 Aug; 121(16):3146-3161. PubMed ID: 35841144
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A Hidden Markov Model for Detecting Confinement in Single-Particle Tracking Trajectories.
    Slator PJ; Burroughs NJ
    Biophys J; 2018 Nov; 115(9):1741-1754. PubMed ID: 30274829
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Membrane cholesterol strongly influences confined diffusion of prestin.
    Kamar RI; Organ-Darling LE; Raphael RM
    Biophys J; 2012 Oct; 103(8):1627-36. PubMed ID: 23083705
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plasma Membrane Organization of Epidermal Growth Factor Receptor in Resting and Ligand-Bound States.
    Bag N; Huang S; Wohland T
    Biophys J; 2015 Nov; 109(9):1925-36. PubMed ID: 26536269
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precise Detection and Visualization of Nanoscale Temporal Confinement in Single-Molecule Tracking Analysis.
    Westra M; MacGillavry HD
    Membranes (Basel); 2022 Jun; 12(7):. PubMed ID: 35877853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Cholesterol-dependent separation of the beta2-adrenergic receptor from its partners determines signaling efficacy: insight into nanoscale organization of signal transduction.
    Pontier SM; Percherancier Y; Galandrin S; Breit A; Galés C; Bouvier M
    J Biol Chem; 2008 Sep; 283(36):24659-72. PubMed ID: 18566454
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Membrane lipid rafts are necessary for the maintenance of the (alpha)7 nicotinic acetylcholine receptor in somatic spines of ciliary neurons.
    Brusés JL; Chauvet N; Rutishauser U
    J Neurosci; 2001 Jan; 21(2):504-12. PubMed ID: 11160430
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Epidermal growth factor-nanoparticle conjugates change the activity from anti-apoptotic to pro-apoptotic at membrane rafts.
    Yamamoto S; Iwamaru Y; Shimizu Y; Ueda Y; Sato M; Yamaguchi K; Nakanishi J
    Acta Biomater; 2019 Apr; 88():383-391. PubMed ID: 30794990
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.