BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38845200)

  • 21. Confinement of unliganded EGFR by tetraspanin nanodomains gates EGFR ligand binding and signaling.
    Sugiyama MG; Brown AI; Vega-Lugo J; Borges JP; Scott AM; Jaqaman K; Fairn GD; Antonescu CN
    Nat Commun; 2023 May; 14(1):2681. PubMed ID: 37160944
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Role of lipid rafts in agrin-elicited acetylcholine receptor clustering.
    Pato C; Stetzkowski-Marden F; Gaus K; Recouvreur M; Cartaud A; Cartaud J
    Chem Biol Interact; 2008 Sep; 175(1-3):64-7. PubMed ID: 18485338
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Proving lipid rafts exist: membrane domains in the prokaryote Borrelia burgdorferi have the same properties as eukaryotic lipid rafts.
    LaRocca TJ; Pathak P; Chiantia S; Toledo A; Silvius JR; Benach JL; London E
    PLoS Pathog; 2013; 9(5):e1003353. PubMed ID: 23696733
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Gold nanoparticles interacting with synthetic lipid rafts: an AFM investigation.
    Ridolfi A; Caselli L; Montis C; Mangiapia G; Berti D; Brucale M; Valle F
    J Microsc; 2020 Dec; 280(3):194-203. PubMed ID: 32432336
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Interaction of membrane/lipid rafts with the cytoskeleton: impact on signaling and function: membrane/lipid rafts, mediators of cytoskeletal arrangement and cell signaling.
    Head BP; Patel HH; Insel PA
    Biochim Biophys Acta; 2014 Feb; 1838(2):532-45. PubMed ID: 23899502
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Relationship of lipid rafts to transient confinement zones detected by single particle tracking.
    Dietrich C; Yang B; Fujiwara T; Kusumi A; Jacobson K
    Biophys J; 2002 Jan; 82(1 Pt 1):274-84. PubMed ID: 11751315
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Cholesterol modulates acetylcholine receptor diffusion by tuning confinement sojourns and nanocluster stability.
    Mosqueira A; Camino PA; Barrantes FJ
    Sci Rep; 2018 Aug; 8(1):11974. PubMed ID: 30097590
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Quantitative FRET Microscopy Reveals a Crucial Role of Cytoskeleton in Promoting PI(4,5)P
    Sarmento MJ; Borges-Araújo L; Pinto SN; Bernardes N; Ricardo JC; Coutinho A; Prieto M; Fernandes F
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769158
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Measurement of lipid nanodomain (raft) formation and size in sphingomyelin/POPC/cholesterol vesicles shows TX-100 and transmembrane helices increase domain size by coalescing preexisting nanodomains but do not induce domain formation.
    Pathak P; London E
    Biophys J; 2011 Nov; 101(10):2417-25. PubMed ID: 22098740
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Are There Lipid Membrane-Domain Subtypes in Neurons with Different Roles in Calcium Signaling?
    Samhan-Arias AK; Poejo J; Marques-da-Silva D; Martínez-Costa OH; Gutierrez-Merino C
    Molecules; 2023 Dec; 28(23):. PubMed ID: 38067638
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Lipid rafts have different sizes depending on membrane composition: a time-resolved fluorescence resonance energy transfer study.
    de Almeida RF; Loura LM; Fedorov A; Prieto M
    J Mol Biol; 2005 Mar; 346(4):1109-20. PubMed ID: 15701521
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biochemical and imaging methods to study receptor membrane organization and association with lipid rafts.
    Castro BM; Torreno-Piña JA; van Zanten TS; Gracia-Parajo MF
    Methods Cell Biol; 2013; 117():105-22. PubMed ID: 24143974
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Topographic control of lipid-raft reconstitution in model membranes.
    Yoon TY; Jeong C; Lee SW; Kim JH; Choi MC; Kim SJ; Kim MW; Lee SD
    Nat Mater; 2006 Apr; 5(4):281-5. PubMed ID: 16565710
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Dynamic actin-mediated nano-scale clustering of CD44 regulates its meso-scale organization at the plasma membrane.
    Sil P; Mateos N; Nath S; Buschow S; Manzo C; Suzuki KGN; Fujiwara T; Kusumi A; Garcia-Parajo MF; Mayor S
    Mol Biol Cell; 2020 Mar; 31(7):561-579. PubMed ID: 31577524
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Partitioning, diffusion, and ligand binding of raft lipid analogs in model and cellular plasma membranes.
    Sezgin E; Levental I; Grzybek M; Schwarzmann G; Mueller V; Honigmann A; Belov VN; Eggeling C; Coskun U; Simons K; Schwille P
    Biochim Biophys Acta; 2012 Jul; 1818(7):1777-84. PubMed ID: 22450237
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dynamic confinement of NK2 receptors in the plasma membrane. Improved FRAP analysis and biological relevance.
    Cézanne L; Lecat S; Lagane B; Millot C; Vollmer JY; Matthes H; Galzi JL; Lopez A
    J Biol Chem; 2004 Oct; 279(43):45057-67. PubMed ID: 15294896
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Visualization of lipid raft membrane compartmentalization in living RN46A neuronal cells using single quantum dot tracking.
    Chang JC; Rosenthal SJ
    ACS Chem Neurosci; 2012 Oct; 3(10):737-43. PubMed ID: 23077717
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Rapid hop diffusion of a G-protein-coupled receptor in the plasma membrane as revealed by single-molecule techniques.
    Suzuki K; Ritchie K; Kajikawa E; Fujiwara T; Kusumi A
    Biophys J; 2005 May; 88(5):3659-80. PubMed ID: 15681644
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Nanodomains can persist at physiologic temperature in plasma membrane vesicles and be modulated by altering cell lipids.
    Li G; Wang Q; Kakuda S; London E
    J Lipid Res; 2020 May; 61(5):758-766. PubMed ID: 31964764
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sphingolipid Organization in the Plasma Membrane and the Mechanisms That Influence It.
    Kraft ML
    Front Cell Dev Biol; 2016; 4():154. PubMed ID: 28119913
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.