BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38845254)

  • 61. Preparation and characterization of cellulose fibers from Meghatyrsus maximus: Applications in its chemical derivatives.
    Gonzalez M; Pereira-Rojas J; Villanueva I; Agüero B; Silva I; Velasquez I; Delgado B; Hernandez J; Rodriguez G; Labrador H; Barros H; Pereira J
    Carbohydr Polym; 2022 Nov; 296():119918. PubMed ID: 36088021
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Characterization of raw and alkali treated new natural cellulosic fiber from Coccinia grandis.L.
    Senthamaraikannan P; Kathiresan M
    Carbohydr Polym; 2018 Apr; 186():332-343. PubMed ID: 29455994
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Characterization of a new cellulosic natural fiber extracted from the root of Ficus religiosa tree.
    Moshi AAM; Ravindran D; Bharathi SRS; Indran S; Saravanakumar SS; Liu Y
    Int J Biol Macromol; 2020 Jan; 142():212-221. PubMed ID: 31525413
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Characterizing natural cellulose fibers from velvet leaf (Abutilon theophrasti) stems.
    Reddy N; Yang Y
    Bioresour Technol; 2008 May; 99(7):2449-54. PubMed ID: 17583497
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Enhancement of mechanical and thermal properties of oil palm empty fruit bunch fiber poly(butylene adipate-co-terephtalate) biocomposites by matrix esterification using succinic anhydride.
    Siyamak S; Ibrahim NA; Abdolmohammadi S; Yunus WM; Rahman MZ
    Molecules; 2012 Feb; 17(2):1969-91. PubMed ID: 22343368
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Characterization of raw and alkali treated new natural cellulosic fibres extracted from the aerial roots of banyan tree.
    Ganapathy T; Sathiskumar R; Senthamaraikannan P; Saravanakumar SS; Khan A
    Int J Biol Macromol; 2019 Oct; 138():573-581. PubMed ID: 31348971
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Extraction of lignocellulosic fiber and cellulose microfibrils from agro waste-palmyra fruit peduncle: Water retting, chlorine-free chemical treatments, physio-chemical, morphological, and thermal characterization.
    Balasubramani V; Nagarajan KJ; Karthic M; Pandiyarajan R
    Int J Biol Macromol; 2024 Feb; 259(Pt 2):129273. PubMed ID: 38211922
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Native Cellulose: Structure, Characterization and Thermal Properties.
    Poletto M; Ornaghi HL; Zattera AJ
    Materials (Basel); 2014 Aug; 7(9):6105-6119. PubMed ID: 28788179
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Evaluation of
    Haile TG; Sibhat GG; Tadese E; Tesfay D; Molla F
    Biomed Res Int; 2020; 2020():7612126. PubMed ID: 33178834
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Study on characterization of Furcraea foetida new natural fiber as composite reinforcement for lightweight applications.
    Manimaran P; Senthamaraikannan P; Sanjay MR; Marichelvam MK; Jawaid M
    Carbohydr Polym; 2018 Feb; 181():650-658. PubMed ID: 29254019
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Chemical, morphology and thermal evaluation of cellulose microfibers obtained from Hibiscus sabdariffa.
    Sonia A; Priya Dasan K
    Carbohydr Polym; 2013 Jan; 92(1):668-74. PubMed ID: 23218352
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Properties and potential applications of natural cellulose fibers from the bark of cotton stalks.
    Reddy N; Yang Y
    Bioresour Technol; 2009 Jul; 100(14):3563-9. PubMed ID: 19327987
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Characterization of alkali treated and untreated new cellulosic fiber from Saharan aloe vera cactus leaves.
    A N B; K J N
    Carbohydr Polym; 2017 Oct; 174():200-208. PubMed ID: 28821059
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Valorization of
    Cabrera-García P; Marrero MD; Benítez AN; Paz R
    Plants (Basel); 2023 Apr; 12(9):. PubMed ID: 37176835
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Description of a new cellulosic natural fiber extracted from Helianthus tuberosus L. as a composite reinforcement material.
    Dalmis R
    Physiol Plant; 2023; 175(4):e13960. PubMed ID: 37339003
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Nanocelluloses from jute fibers and their nanocomposites with natural rubber: Preparation and characterization.
    Thomas MG; Abraham E; Jyotishkumar P; Maria HJ; Pothen LA; Thomas S
    Int J Biol Macromol; 2015 Nov; 81():768-77. PubMed ID: 26318667
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Characterization of a novel natural cellulosic fiber from Calotropis gigantea fruit bunch for ecofriendly polymer composites.
    Narayanasamy P; Balasundar P; Senthil S; Sanjay MR; Siengchin S; Khan A; Asiri AM
    Int J Biol Macromol; 2020 May; 150():793-801. PubMed ID: 32068059
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Ballistic Performance, Thermal and Chemical Characterization of Ubim Fiber (
    Marchi BZ; Silveira PHPMD; Bezerra WBA; Nascimento LFC; Lopes FPD; Candido VS; Silva ACRD; Monteiro SN
    Polymers (Basel); 2023 Jul; 15(15):. PubMed ID: 37571114
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Physical, structural, mechanical and thermal characterization of bacterial cellulose by G. hansenii NCIM 2529.
    Mohite BV; Patil SV
    Carbohydr Polym; 2014 Jun; 106():132-41. PubMed ID: 24721060
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Preparation and characterization of cellulose nanofibers from de-pectinated sugar beet pulp.
    Li M; Wang LJ; Li D; Cheng YL; Adhikari B
    Carbohydr Polym; 2014 Feb; 102():136-43. PubMed ID: 24507265
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.