BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 3884538)

  • 1. Effects of fibroblastic and endothelial extracellular matrices on corneal endothelial cells.
    Hsieh P; Baum J
    Invest Ophthalmol Vis Sci; 1985 Apr; 26(4):457-63. PubMed ID: 3884538
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Matrix stimulates the proliferation of human corneal endothelial cells in culture.
    Blake DA; Yu H; Young DL; Caldwell DR
    Invest Ophthalmol Vis Sci; 1997 May; 38(6):1119-29. PubMed ID: 9152231
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The effect of extracellular matrix molecules on the in vitro behavior of bovine endothelial cells.
    Underwood PA; Bennett FA
    Exp Cell Res; 1993 Apr; 205(2):311-9. PubMed ID: 7683271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Are factors originating from serum, plasma, or cultured cells involved in the growth-promoting effect of the extracellular matrix produced by cultured bovine corneal endothelial cells?
    Gospodarowicz D; Gonzalez R; Fujii DK
    J Cell Physiol; 1983 Feb; 114(2):191-202. PubMed ID: 6218176
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Induction of alpha-smooth muscle actin expression and myofibroblast transformation in cultured corneal keratocytes.
    Jester JV; Barry-Lane PA; Cavanagh HD; Petroll WM
    Cornea; 1996 Sep; 15(5):505-16. PubMed ID: 8862928
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glycosaminoglycans synthesized by cultured bovine corneal endothelial cells.
    Robinson J; Gospodarowicz D
    J Cell Physiol; 1983 Dec; 117(3):368-76. PubMed ID: 6418749
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effects of fibroblastic and endothelial extracellular matrices on corneal endothelial cells.
    Baum J
    Invest Ophthalmol Vis Sci; 2010 Dec; 51(12):6905-6; author reply 6906. PubMed ID: 21123798
    [No Abstract]   [Full Text] [Related]  

  • 8. Extracellular matrix production regulation by TGF-beta in corneal endothelial cells.
    Usui T; Takase M; Kaji Y; Suzuki K; Ishida K; Tsuru T; Miyata K; Kawabata M; Yamashita H
    Invest Ophthalmol Vis Sci; 1998 Oct; 39(11):1981-9. PubMed ID: 9761276
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Basement membrane assembly and differentiation of cultured corneal cells: importance of culture environment and endothelial cell interaction.
    Zieske JD; Mason VS; Wasson ME; Meunier SF; Nolte CJ; Fukai N; Olsen BR; Parenteau NL
    Exp Cell Res; 1994 Oct; 214(2):621-33. PubMed ID: 7523155
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maspin: synthesis by human cornea and regulation of in vitro stromal cell adhesion to extracellular matrix.
    Ngamkitidechakul C; Burke JM; O'Brien WJ; Twining SS
    Invest Ophthalmol Vis Sci; 2001 Dec; 42(13):3135-41. PubMed ID: 11726614
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Colchicine reverts cell shape but not collagen phenotypes in corneal endothelial cells modulated by polymorphonuclear leukocytes.
    Kay EP; Oh S
    Invest Ophthalmol Vis Sci; 1987 May; 28(5):826-33. PubMed ID: 3553059
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Modulation of endothelial cell morphology and collagen synthesis by polymorphonuclear leukocytes.
    Kay EP; Nimni ME; Smith RE
    Invest Ophthalmol Vis Sci; 1984 May; 25(5):502-12. PubMed ID: 6715126
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of extracellular matrix genes in adult human dermal microvascular endothelial cells and their regulation by heparin and endothelial cell mitogens.
    Hitraya EG; Tan EM; Rudnicka L; Jimenez SA
    Lab Invest; 1995 Sep; 73(3):393-402. PubMed ID: 7564272
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FGF-2 induced reorganization and disruption of actin cytoskeleton through PI 3-kinase, Rho, and Cdc42 in corneal endothelial cells.
    Lee HT; Kay EP
    Mol Vis; 2003 Dec; 9():624-34. PubMed ID: 14685150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Myofibroblast transformation of cat corneal endothelium by transforming growth factor-beta1, -beta2, and -beta3.
    Petroll WM; Jester JV; Bean JJ; Cavanagh HD
    Invest Ophthalmol Vis Sci; 1998 Oct; 39(11):2018-32. PubMed ID: 9761280
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Matrix-cytoskeletal interactions in the developing eye.
    Hay ED
    J Cell Biochem; 1985; 27(2):143-56. PubMed ID: 3886675
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of intraocular irrigating solutions on the spreading of rabbit corneal endothelial cells on extracellular matrices.
    Nishida T; Otori T
    Jpn J Ophthalmol; 1991; 35(1):61-7. PubMed ID: 1895570
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of rous sarcoma virus transformation of rat-1 fibroblasts upon their growth factor and anchorage requirements in serum-free medium.
    Giguère L; Gospodarowicz D
    Cancer Res; 1983 May; 43(5):2121-30. PubMed ID: 6299541
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro system of corneal endothelium.
    Arita T; Okamura R; Kodama R; Eguchi G
    Jpn J Ophthalmol; 1986; 30(3):233-7. PubMed ID: 3537413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Maintenance of corneal endothelial cell shape by prostaglandin E2: effects of EGF and indomethacin.
    Neufeld AH; Jumblatt MM; Matkin ED; Raymond GM
    Invest Ophthalmol Vis Sci; 1986 Oct; 27(10):1437-42. PubMed ID: 3489692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.