These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

158 related articles for article (PubMed ID: 38845530)

  • 21. Monodisperse Au@Ag core-shell nanoprobes with ultrasensitive SERS-activity for rapid identification and Raman imaging of living cancer cells.
    Chang J; Zhang A; Huang Z; Chen Y; Zhang Q; Cui D
    Talanta; 2019 Jun; 198():45-54. PubMed ID: 30876586
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Bioorthogonal SERS Nanoprobes for Mulitplex Spectroscopic Detection, Tumor Cell Targeting, and Tissue Imaging.
    Wu J; Liang D; Jin Q; Liu J; Zheng M; Duan X; Tang X
    Chemistry; 2015 Sep; 21(37):12914-8. PubMed ID: 26222682
    [TBL] [Abstract][Full Text] [Related]  

  • 23. On-line SERS detection of single bacterium using novel SERS nanoprobes and a microfluidic dielectrophoresis device.
    Lin HY; Huang CH; Hsieh WH; Liu LH; Lin YC; Chu CC; Wang ST; Kuo IT; Chau LK; Yang CY
    Small; 2014 Nov; 10(22):4700-10. PubMed ID: 25115777
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Design and Synthesis of SERS Materials for In Vivo Molecular Imaging and Biosensing.
    Li Q; Huo H; Wu Y; Chen L; Su L; Zhang X; Song J; Yang H
    Adv Sci (Weinh); 2023 Mar; 10(8):e2202051. PubMed ID: 36683237
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Multicolor Cocktail for Breast Cancer Multiplex Phenotype Targeting and Diagnosis Using Bioorthogonal Surface-Enhanced Raman Scattering Nanoprobes.
    Wang J; Liang D; Feng J; Tang X
    Anal Chem; 2019 Sep; 91(17):11045-11054. PubMed ID: 31361124
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Second near-infrared window fluorescence nanoprobes for deep-tissue in vivo multiplexed bioimaging.
    Yang Y; Xie Y; Zhang F
    Adv Drug Deliv Rev; 2023 Feb; 193():114697. PubMed ID: 36641080
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Artificial Intelligence for Surface-Enhanced Raman Spectroscopy.
    Bi X; Lin L; Chen Z; Ye J
    Small Methods; 2024 Jan; 8(1):e2301243. PubMed ID: 37888799
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microwave-assisted synthesis of surface-enhanced Raman scattering nanoprobes for cellular sensing.
    Bowey K; Tanguay JF; Sandros MG; Tabrizian M
    Colloids Surf B Biointerfaces; 2014 Oct; 122():617-622. PubMed ID: 25179113
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Confined growth of Ag nanogap shells emitting stable Raman label signals for SERS liquid biopsy of pancreatic cancer.
    Hwang IJ; Choi C; Kim H; Lee H; Yoo Y; Choi Y; Hwang JH; Jung K; Lee JC; Kim JH
    Biosens Bioelectron; 2024 Mar; 248():115948. PubMed ID: 38160636
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Raman Scattering-Based Biosensing: New Prospects and Opportunities.
    Serebrennikova KV; Berlina AN; Sotnikov DV; Zherdev AV; Dzantiev BB
    Biosensors (Basel); 2021 Dec; 11(12):. PubMed ID: 34940269
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Bioanalytical applications of SERS (surface-enhanced Raman spectroscopy).
    Hudson SD; Chumanov G
    Anal Bioanal Chem; 2009 Jun; 394(3):679-86. PubMed ID: 19343331
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Current and Future Advancements of Raman Spectroscopy Techniques in Cancer Nanomedicine.
    Canetta E
    Int J Mol Sci; 2021 Dec; 22(23):. PubMed ID: 34884946
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Plasmonic surface-enhanced Raman scattering nano-substrates for detection of anionic environmental contaminants: Current progress and future perspectives.
    Kitaw SL; Birhan YS; Tsai HC
    Environ Res; 2023 Mar; 221():115247. PubMed ID: 36640935
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Unveiling NIR Aza-Boron-Dipyrromethene (BODIPY) Dyes as Raman Probes: Surface-Enhanced Raman Scattering (SERS)-Guided Selective Detection and Imaging of Human Cancer Cells.
    Adarsh N; Ramya AN; Maiti KK; Ramaiah D
    Chemistry; 2017 Oct; 23(57):14286-14291. PubMed ID: 28796314
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Development of graphene oxide-wrapped gold nanorods as robust nanoplatform for ultrafast near-infrared SERS bioimaging.
    Qiu X; You X; Chen X; Chen H; Dhinakar A; Liu S; Guo Z; Wu J; Liu Z
    Int J Nanomedicine; 2017; 12():4349-4360. PubMed ID: 28652737
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Substrates for Surface-Enhanced Raman Scattering Formed on Nanostructured Non-Metallic Materials: Preparation and Characterization.
    Krajczewski J; Ambroziak R; Kudelski A
    Nanomaterials (Basel); 2020 Dec; 11(1):. PubMed ID: 33396325
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Exploring and Engineering 2D Transition Metal Dichalcogenides toward Ultimate SERS Performance.
    Tang X; Hao Q; Hou X; Lan L; Li M; Yao L; Zhao X; Ni Z; Fan X; Qiu T
    Adv Mater; 2024 May; 36(19):e2312348. PubMed ID: 38302855
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Semiconductor-based surface enhanced Raman scattering (SERS): from active materials to performance improvement.
    Wang X; Zhang E; Shi H; Tao Y; Ren X
    Analyst; 2022 Mar; 147(7):1257-1272. PubMed ID: 35253817
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Acridine-based dyes as high-performance near-infrared Raman reporter molecules for cell imaging.
    Du J; Li J; Li Y; Wang D; Cao H; He W; Zhou Y
    RSC Adv; 2022 Jan; 12(6):3380-3385. PubMed ID: 35425341
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Organic fluorescent nanoprobes with NIR-IIb characteristics for deep learning.
    Wanderi K; Cui Z
    Exploration (Beijing); 2022 Apr; 2(2):20210097. PubMed ID: 37323884
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.