These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 38845536)

  • 61. Recent Progress in Silicon-Based Materials for Performance-Enhanced Lithium-Ion Batteries.
    Kong X; Xi Z; Wang L; Zhou Y; Liu Y; Wang L; Li S; Chen X; Wan Z
    Molecules; 2023 Feb; 28(5):. PubMed ID: 36903324
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Inorganic crosslinked supramolecular binder with fast Self-Healing for high performance silicon based anodes in Lithium-Ion batteries.
    Zhao J; Wei D; Wang J; Yang K; Wang Z; Chen Z; Zhang S; Zhang C; Yang X
    J Colloid Interface Sci; 2022 Nov; 625():373-382. PubMed ID: 35717851
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Two-Dimensional Materials to Address the Lithium Battery Challenges.
    Rojaee R; Shahbazian-Yassar R
    ACS Nano; 2020 Mar; 14(3):2628-2658. PubMed ID: 32083832
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Recent advances in cathode materials for rechargeable lithium-sulfur batteries.
    Li F; Liu Q; Hu J; Feng Y; He P; Ma J
    Nanoscale; 2019 Sep; 11(33):15418-15439. PubMed ID: 31408082
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Graphene/PVDF Composites for Ni-rich Oxide Cathodes Toward High-Energy Density Li-ion Batteries.
    Park CW; Lee JH; Seo JK; Ran WTA; Whang D; Hwang SM; Kim YJ
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33925721
    [TBL] [Abstract][Full Text] [Related]  

  • 66. High Electrochemical Performance Silicon Thin-Film Free-Standing Electrodes Based on Buckypaper for Flexible Lithium-Ion Batteries.
    Nyamaa O; Seo DH; Lee JS; Jeong HM; Huh SC; Yang JH; Dolgor E; Noh JP
    Materials (Basel); 2021 Apr; 14(8):. PubMed ID: 33921824
    [TBL] [Abstract][Full Text] [Related]  

  • 67. A Conductive Binder for High-Performance Sn Electrodes in Lithium-Ion Batteries.
    Zhao Y; Yang L; Liu D; Hu J; Han L; Wang Z; Pan F
    ACS Appl Mater Interfaces; 2018 Jan; 10(2):1672-1677. PubMed ID: 29266916
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Effect of Different Binders on the Electrochemical Performance of Metal Oxide Anode for Lithium-Ion Batteries.
    Wang R; Feng L; Yang W; Zhang Y; Zhang Y; Bai W; Liu B; Zhang W; Chuan Y; Zheng Z; Guan H
    Nanoscale Res Lett; 2017 Oct; 12(1):575. PubMed ID: 29086045
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Determination of Si/graphite anode composition for new generation Li-ion batteries: a case study.
    Kalafat İ; Yuca N
    Turk J Chem; 2022; 46(6):2112-2122. PubMed ID: 37621354
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Carbon-Based Modification Materials for Lithium-ion Battery Cathodes: Advances and Perspectives.
    Zhou L; Yang H; Han T; Song Y; Yang G; Li L
    Front Chem; 2022; 10():914930. PubMed ID: 35755257
    [TBL] [Abstract][Full Text] [Related]  

  • 71. A cycling robust network binder for high performance Si-based negative electrodes for lithium-ion batteries.
    Zhang J; Wang N; Zhang W; Fang S; Yu Z; Shi B; Yang J
    J Colloid Interface Sci; 2020 Oct; 578():452-460. PubMed ID: 32535427
    [TBL] [Abstract][Full Text] [Related]  

  • 72. In situ thermally cross-linked polyacrylonitrile as binder for high-performance silicon as lithium ion battery anode.
    Shen L; Shen L; Wang Z; Chen L
    ChemSusChem; 2014 Jul; 7(7):1951-6. PubMed ID: 24782265
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Molecular Spring Enabled High-Performance Anode for Lithium Ion Batteries.
    Zheng T; Jia Z; Lin N; Langer T; Lux S; Lund I; Gentschev AC; Qiao J; Liu G
    Polymers (Basel); 2017 Nov; 9(12):. PubMed ID: 30965957
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Nanocarbon networks for advanced rechargeable lithium batteries.
    Xin S; Guo YG; Wan LJ
    Acc Chem Res; 2012 Oct; 45(10):1759-69. PubMed ID: 22953777
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Review on organosulfur materials for rechargeable lithium batteries.
    Shadike Z; Tan S; Wang QC; Lin R; Hu E; Qu D; Yang XQ
    Mater Horiz; 2021 Feb; 8(2):471-500. PubMed ID: 34821265
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Vegetable Oil-Based Waterborne Polyurethane as Eco-Binders for Sulfur Cathodes in Lithium-Sulfur Batteries.
    Chen Z; Man L; Liu J; Lu L; Yang Z; Yang Y
    Macromol Rapid Commun; 2021 Oct; 42(19):e2100342. PubMed ID: 34347319
    [TBL] [Abstract][Full Text] [Related]  

  • 77. Multifunctional SA-PProDOT Binder for Lithium Ion Batteries.
    Ling M; Qiu J; Li S; Yan C; Kiefel MJ; Liu G; Zhang S
    Nano Lett; 2015 Jul; 15(7):4440-7. PubMed ID: 26061529
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Binder-Free V
    Diem AM; Fenk B; Bill J; Burghard Z
    Nanomaterials (Basel); 2020 Jan; 10(2):. PubMed ID: 32019197
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Polyimides as Promising Materials for Lithium-Ion Batteries: A Review.
    Zhang M; Wang L; Xu H; Song Y; He X
    Nanomicro Lett; 2023 May; 15(1):135. PubMed ID: 37221393
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Advances in Lithium-Sulfur Batteries: From Academic Research to Commercial Viability.
    Chen Y; Wang T; Tian H; Su D; Zhang Q; Wang G
    Adv Mater; 2021 Jul; 33(29):e2003666. PubMed ID: 34096100
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.