These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 38845908)

  • 21. Interface Engineering of Silicon/Carbon Thin-Film Anodes for High-Rate Lithium-Ion Batteries.
    Tong L; Wang P; Fang W; Guo X; Bao W; Yang Y; Shen S; Qiu F
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29242-29252. PubMed ID: 32484322
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Application and Development of Silicon Anode Binders for Lithium-Ion Batteries.
    Shen H; Wang Q; Chen Z; Rong C; Chao D
    Materials (Basel); 2023 Jun; 16(12):. PubMed ID: 37374450
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Integration of Graphite and Silicon Anodes for the Commercialization of High-Energy Lithium-Ion Batteries.
    Chae S; Choi SH; Kim N; Sung J; Cho J
    Angew Chem Int Ed Engl; 2020 Jan; 59(1):110-135. PubMed ID: 30887635
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Recovery of porous silicon from waste crystalline silicon solar panels for high-performance lithium-ion battery anodes.
    Zhang C; Ma Q; Cai M; Zhao Z; Xie H; Ning Z; Wang D; Yin H
    Waste Manag; 2021 Nov; 135():182-189. PubMed ID: 34509770
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of Si/C Composites by Silicon Waste Recycling and Carbon Coating for High-Capacity Lithium-Ion Storage.
    Huang J; Li J; Ye L; Wu M; Liu H; Cui Y; Lian J; Wang C
    Nanomaterials (Basel); 2023 Jul; 13(14):. PubMed ID: 37513153
    [TBL] [Abstract][Full Text] [Related]  

  • 26. First-principles calculations of bulk, surface and interfacial phases and properties of silicon graphite composites as anode materials for lithium ion batteries.
    Olou'ou Guifo SB; Mueller JE; Henriques D; Markus T
    Phys Chem Chem Phys; 2022 Apr; 24(16):9432-9448. PubMed ID: 35388824
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Hollow Porous N and Co Dual-Doped Silicon@Carbon Nanocube Derived by ZnCo-Bimetallic Metal-Organic Framework toward Advanced Lithium-Ion Battery Anodes.
    Kim H; Baek J; Son DK; Ruby Raj M; Lee G
    ACS Appl Mater Interfaces; 2022 Oct; 14(40):45458-45475. PubMed ID: 36191137
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Nano/Microstructured Silicon-Carbon Hybrid Composite Particles Fabricated with Corn Starch Biowaste as Anode Materials for Li-Ion Batteries.
    Kwon HJ; Hwang JY; Shin HJ; Jeong MG; Chung KY; Sun YK; Jung HG
    Nano Lett; 2020 Jan; 20(1):625-635. PubMed ID: 31825628
    [TBL] [Abstract][Full Text] [Related]  

  • 29. The Positive Effect of ZnS in Waste Tire Carbon as Anode for Lithium-Ion Batteries.
    Wang X; Zhou L; Li J; Han N; Li X; Liu G; Jia D; Ma Z; Song G; Zhu X; Peng Z; Zhang L
    Materials (Basel); 2021 Apr; 14(9):. PubMed ID: 33923132
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Innovative Solutions for High-Performance Silicon Anodes in Lithium-Ion Batteries: Overcoming Challenges and Real-World Applications.
    Khan M; Yan S; Ali M; Mahmood F; Zheng Y; Li G; Liu J; Song X; Wang Y
    Nanomicro Lett; 2024 Apr; 16(1):179. PubMed ID: 38656460
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Growth of Vertical Graphene Sheets on Silicon Nanoparticles Well-Dispersed on Graphite Particles for High-Performance Lithium-Ion Battery Anode.
    Yu P; Li Z; Han M; Yu J
    Small; 2024 Apr; 20(17):e2307494. PubMed ID: 38041468
    [TBL] [Abstract][Full Text] [Related]  

  • 32. MXene as Promising Anode Material for High-Performance Lithium-Ion Batteries: A Comprehensive Review.
    Chy MNU; Rahman MA; Kim JH; Barua N; Dujana WA
    Nanomaterials (Basel); 2024 Mar; 14(7):. PubMed ID: 38607150
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Three-dimensional network of nitrogen-doped carbon matrix-encapsulated Si nanoparticles/carbon nanofibers hybrids for lithium-ion battery anodes with excellent capability.
    Cong R; Jo M; Martino A; Park HH; Lee H; Lee CS
    Sci Rep; 2022 Sep; 12(1):16002. PubMed ID: 36163350
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Imaging the Surface/Interface Morphologies Evolution of Silicon Anodes Using
    Yang D; Ng YXA; Zhang K; Chang Q; Chen J; Liang T; Cheng S; Sun Y; Shen W; Ang EH; Xiang H; Song X
    ACS Appl Mater Interfaces; 2023 May; 15(17):20583-20602. PubMed ID: 37087764
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Solutions for the problems of silicon-carbon anode materials for lithium-ion batteries.
    Liu X; Zhu X; Pan D
    R Soc Open Sci; 2018 Jun; 5(6):172370. PubMed ID: 30110426
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of Crystalline Si and SiC Species in the Performance of Reduced Hybrid C/Si Gels as Anodes for Lithium-Ion Batteries.
    Flores-López SL; Lobato B; Rey-Raap N; Cameán I; García AB; Arenillas A
    Nanomaterials (Basel); 2023 Jan; 13(3):. PubMed ID: 36770419
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Na-Ion Battery Anodes: Materials and Electrochemistry.
    Luo W; Shen F; Bommier C; Zhu H; Ji X; Hu L
    Acc Chem Res; 2016 Feb; 49(2):231-40. PubMed ID: 26783764
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Determination of Si/graphite anode composition for new generation Li-ion batteries: a case study.
    Kalafat İ; Yuca N
    Turk J Chem; 2022; 46(6):2112-2122. PubMed ID: 37621354
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Reutilization of Silicon-Cutting Waste via Constructing Multilayer Si@SiO
    Sun Y; Wu J; Chen X; Lai C
    Nanomaterials (Basel); 2024 Apr; 14(7):. PubMed ID: 38607159
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Low-cost carbon-silicon nanocomposite anodes for lithium ion batteries.
    Badi N; Erra AR; Hernandez FC; Okonkwo AO; Hobosyan M; Martirosyan KS
    Nanoscale Res Lett; 2014; 9(1):360. PubMed ID: 25114651
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.