BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38846564)

  • 1. Goethite dissolution by acidophilic bacteria.
    Stanković S; Schippers A
    Front Microbiol; 2024; 15():1360018. PubMed ID: 38846564
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Do ferrous iron-oxidizing acidophiles (
    Hetz SA; Schippers A
    Front Microbiol; 2024; 15():1359019. PubMed ID: 38655078
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Rates of iron(III) reduction coupled to elemental sulfur or tetrathionate oxidation by acidophilic microorganisms and detection of sulfur intermediates.
    Breuker A; Schippers A
    Res Microbiol; 2024; 175(1-2):104110. PubMed ID: 37544391
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Recovery of Nickel and Cobalt from Laterite Tailings by Reductive Dissolution under Aerobic Conditions Using Acidithiobacillus Species.
    Marrero J; Coto O; Goldmann S; Graupner T; Schippers A
    Environ Sci Technol; 2015 Jun; 49(11):6674-82. PubMed ID: 25923144
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Indirect Redox Transformations of Iron, Copper, and Chromium Catalyzed by Extremely Acidophilic Bacteria.
    Johnson DB; Hedrich S; Pakostova E
    Front Microbiol; 2017; 8():211. PubMed ID: 28239375
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Bioleaching of Transition Metals From Limonitic Laterite Deposits and Reassessment of the Multiple Roles of Sulfur-Oxidizing Acidophiles in the Process.
    Johnson DB; Smith SL; Santos AL
    Front Microbiol; 2021; 12():703177. PubMed ID: 34381430
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Optimized biogenic sulfuric acid production and application in the treatment of waste incineration residues.
    Kremser K; Maltschnig M; Schön H; Jandric A; Gajdosik M; Vaculovic T; Kucera J; Guebitz GM
    Waste Manag; 2022 May; 144():182-190. PubMed ID: 35378357
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Fe(III) bioreduction kinetics in anaerobic batch and continuous stirred tank reactors with acidophilic bacteria relevant for bioleaching of limonitic laterites.
    Hubau A; Joulian C; Tris H; Pino-Herrera D; Becquet C; Guezennec AG
    Front Microbiol; 2024; 15():1358788. PubMed ID: 38533329
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Extraction of copper from an oxidized (lateritic) ore using bacterially catalysed reductive dissolution.
    Nancucheo I; Grail BM; Hilario F; du Plessis C; Johnson DB
    Appl Microbiol Biotechnol; 2014; 98(14):6297-305. PubMed ID: 24687752
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effect of ferric ions on the anaerobic bio-dissolution of jarosites by Acidithiobacillus ferrooxidans.
    Yang Y; Chen S; Wang B; Wen X; Li H; Zeng RJ
    Sci Total Environ; 2020 Mar; 710():136334. PubMed ID: 32050370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ferric Uptake Regulator Provides a New Strategy for Acidophile Adaptation to Acidic Ecosystems.
    Chen XK; Li XY; Ha YF; Lin JQ; Liu XM; Pang X; Lin JQ; Chen LX
    Appl Environ Microbiol; 2020 May; 86(11):. PubMed ID: 32245756
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aerobic and anaerobic oxidation of hydrogen by acidophilic bacteria.
    Hedrich S; Johnson DB
    FEMS Microbiol Lett; 2013 Dec; 349(1):40-5. PubMed ID: 24117601
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microbial iron management mechanisms in extremely acidic environments: comparative genomics evidence for diversity and versatility.
    Osorio H; Martínez V; Nieto PA; Holmes DS; Quatrini R
    BMC Microbiol; 2008 Nov; 8():203. PubMed ID: 19025650
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Investigation of energy gene expressions and community structures of free and attached acidophilic bacteria in chalcopyrite bioleaching.
    Zhu J; Jiao W; Li Q; Liu X; Qin W; Qiu G; Hu Y; Chai L
    J Ind Microbiol Biotechnol; 2012 Dec; 39(12):1833-40. PubMed ID: 22968225
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Anaerobic reductive bio-dissolution of jarosites by Acidithiobacillus ferrooxidans using hydrogen as electron donor.
    Yang YK; Chen S; Yang DS; Zhang W; Wang HJ; Zeng RJ
    Sci Total Environ; 2019 Oct; 686():869-877. PubMed ID: 31200307
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Generation of acid mine drainage around the Karaerik copper mine (Espiye, Giresun, NE Turkey): implications from the bacterial population in the Acısu effluent.
    Sağlam ES; Akçay M; Çolak DN; İnan Bektaş K; Beldüz AO
    Extremophiles; 2016 Sep; 20(5):673-85. PubMed ID: 27338270
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synergistic effect between sulfide mineral and acidophilic bacteria significantly promoted Cr(VI) reduction.
    Gan M; Li J; Sun S; Ding J; Zhu J; Liu X; Qiu G
    J Environ Manage; 2018 Aug; 219():84-94. PubMed ID: 29730593
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Iron respiration by Acidiphilium cryptum at pH 5.
    Bilgin AA; Silverstein J; Jenkins JD
    FEMS Microbiol Ecol; 2004 Jul; 49(1):137-43. PubMed ID: 19712391
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of Acidithiobacillus ferrooxidans in alleviating the inhibitory effect of thiosulfate on the growth of acidophilic Acidiphilium species isolated from acid mine drainage samples from Garubathan, India.
    Gurung A; Chakraborty R
    Can J Microbiol; 2009 Sep; 55(9):1040-8. PubMed ID: 19898546
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Characteristics of an Iron-Reducing, Moderately Acidophilic Actinobacterium Isolated from Pyritic Mine Waste, and Its Potential Role in Mitigating Mineral Dissolution in Mineral Tailings Deposits.
    Nancucheo I; Johnson DB
    Microorganisms; 2020 Jul; 8(7):. PubMed ID: 32630740
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.