These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

119 related articles for article (PubMed ID: 38846625)

  • 1. Space-Time Distribution of Trichloroethylene Groundwater Concentrations: Geostatistical Modeling and Visualization.
    Goovaerts P; Rihana-Abdallah A; Pang Y
    Math Geosci; 2024 Apr; 56(3):437-464. PubMed ID: 38846625
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Movement of trichloroethene in a discontinuous permafrost zone.
    Carlson AE; Barnes DL
    J Contam Hydrol; 2011 Jun; 124(1-4):1-13. PubMed ID: 21382645
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development and Evaluation of Geostatistical Methods for Non-Euclidean-Based Spatial Covariance Matrices.
    Davis BJK; Curriero FC
    Math Geosci; 2019 Aug; 51(6):767-791. PubMed ID: 31827631
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Co-occurrence of 1,4-dioxane with trichloroethylene in chlorinated solvent groundwater plumes at US Air Force installations: Fact or fiction.
    Anderson RH; Anderson JK; Bower PA
    Integr Environ Assess Manag; 2012 Oct; 8(4):731-7. PubMed ID: 22492728
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nested monitoring approaches to delineate groundwater trichloroethene discharge to a UK lowland stream at multiple spatial scales.
    Weatherill J; Krause S; Voyce K; Drijfhout F; Levy A; Cassidy N
    J Contam Hydrol; 2014 Mar; 158():38-54. PubMed ID: 24424265
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Field study of TCE diffusion profiles below DNAPL to assess aquitard integrity.
    Parker BL; Cherry JA; Chapman SW
    J Contam Hydrol; 2004 Oct; 74(1-4):197-230. PubMed ID: 15358493
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Groundwater-surface water interaction and its role on TCE groundwater plume attenuation.
    Chapman SW; Parker BL; Cherry JA; Aravena R; Hunkeler D
    J Contam Hydrol; 2007 May; 91(3-4):203-32. PubMed ID: 17182152
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evaluating the effectiveness of a geostatistical approach with groundwater flow modeling for three-dimensional estimation of a contaminant plume.
    Takai S; Shimada T; Takeda S; Koike K
    J Contam Hydrol; 2022 Dec; 251():104097. PubMed ID: 36302322
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Efficacy of controlled-release KMnO4 (CRP) for controlling dissolved TCE plume in groundwater: a large flow-tank study.
    Lee BS; Kim JH; Lee KC; Kim YB; Schwartz FW; Lee ES; Woo NC; Lee MK
    Chemosphere; 2009 Feb; 74(6):745-50. PubMed ID: 19118857
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Plume persistence caused by back diffusion from thin clay layers in a sand aquifer following TCE source-zone hydraulic isolation.
    Parker BL; Chapman SW; Guilbeault MA
    J Contam Hydrol; 2008 Nov; 102(1-2):86-104. PubMed ID: 18775583
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Trichloroethylene (TCE) in tree cores to complement a subsurface investigation on residential property near a former electroplating facility.
    Wilcox JD; Johnson KM
    Environ Monit Assess; 2016 Oct; 188(10):587. PubMed ID: 27665571
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Natural attenuation of trichloroethylene in fractured shale bedrock.
    Lenczewski M; Jardine P; McKay L; Layton A
    J Contam Hydrol; 2003 Jul; 64(3-4):151-68. PubMed ID: 12814878
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of computational models to reconstruct and predict trichloroethylene exposure.
    Maslia ML; Aral MM; Williams RC; Williams-Fleetwood S; Hayes LC; Wilder LC
    Toxicol Ind Health; 1996; 12(2):139-52. PubMed ID: 8794528
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DFN-M field characterization of sandstone for a process-based site conceptual model and numerical simulations of TCE transport with degradation.
    Pierce AA; Chapman SW; Zimmerman LK; Hurley JC; Aravena R; Cherry JA; Parker BL
    J Contam Hydrol; 2018 May; 212():96-114. PubMed ID: 29530334
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Modeling groundwater quality by using hybrid intelligent and geostatistical methods.
    Maroufpoor S; Jalali M; Nikmehr S; Shiri N; Shiri J; Maroufpoor E
    Environ Sci Pollut Res Int; 2020 Aug; 27(22):28183-28197. PubMed ID: 32415439
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Evaluation of the fate and transport of chlorinated ethenes in a complex groundwater system discharging to a stream in Wonju, Korea.
    Lee SS; Kaown D; Lee KK
    J Contam Hydrol; 2015 Nov; 182():231-43. PubMed ID: 26433603
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Spatial and temporal groundwater level variation geostatistical modeling in the city of Konya, Turkey.
    Cay T; Uyan M
    Water Environ Res; 2009 Dec; 81(12):2460-70. PubMed ID: 20099631
    [TBL] [Abstract][Full Text] [Related]  

  • 18. An innovative permeable reactive bio-barrier to remediate trichloroethene-contaminated groundwater: A field study.
    Lu CW; Lo KH; Wang SC; Kao CM; Chen SC
    Sci Total Environ; 2024 Apr; 920():170885. PubMed ID: 38342459
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The legacy of chlorinated solvents in the Birmingham aquifer, UK: observations spanning three decades and the challenge of future urban groundwater development.
    Rivett MO; Turner RJ; Glibbery Née Murcott P; Cuthbert MO
    J Contam Hydrol; 2012 Oct; 140-141():107-23. PubMed ID: 23022878
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Relationship between vapor intrusion and human exposure to trichloroethylene.
    Archer NP; Bradford CM; Villanacci JF; Crain NE; Corsi RL; Chambers DM; Burk T; Blount BC
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2015; 50(13):1360-8. PubMed ID: 26259926
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.