BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38846629)

  • 1. The evolution of femoral morphology in giant non-avian theropod dinosaurs.
    Pintore R; Hutchinson JR; Bishop PJ; Tsai HP; Houssaye A
    Paleobiology; 2024 May; 50(2):308-329. PubMed ID: 38846629
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Femoral specializations to locomotor habits in early archosauriforms.
    Pintore R; Houssaye A; Nesbitt SJ; Hutchinson JR
    J Anat; 2022 May; 240(5):867-892. PubMed ID: 34841511
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Walking like dinosaurs: chickens with artificial tails provide clues about non-avian theropod locomotion.
    Grossi B; Iriarte-Díaz J; Larach O; Canals M; Vásquez RA
    PLoS One; 2014; 9(2):e88458. PubMed ID: 24505491
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational modelling of locomotor muscle moment arms in the basal dinosaur Lesothosaurus diagnosticus: assessing convergence between birds and basal ornithischians.
    Bates KT; Maidment SC; Allen V; Barrett PM
    J Anat; 2012 Mar; 220(3):212-32. PubMed ID: 22211275
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Air-filled postcranial bones in theropod dinosaurs: physiological implications and the 'reptile'-bird transition.
    Benson RB; Butler RJ; Carrano MT; O'Connor PM
    Biol Rev Camb Philos Soc; 2012 Feb; 87(1):168-93. PubMed ID: 21733078
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Linking the evolution of body shape and locomotor biomechanics in bird-line archosaurs.
    Allen V; Bates KT; Li Z; Hutchinson JR
    Nature; 2013 May; 497(7447):104-7. PubMed ID: 23615616
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The evolution of pelvic limb muscle moment arms in bird-line archosaurs.
    Allen VR; Kilbourne BM; Hutchinson JR
    Sci Adv; 2021 Mar; 7(12):. PubMed ID: 33741593
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flightless birds are not neuroanatomical analogs of non-avian dinosaurs.
    Gold MEL; Watanabe A
    BMC Evol Biol; 2018 Dec; 18(1):190. PubMed ID: 30545287
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Anatomical and Functional Evolution of the Femoral Fourth Trochanter in Ornithischian Dinosaurs.
    Persons WS; Currie PJ
    Anat Rec (Hoboken); 2020 Apr; 303(4):1146-1157. PubMed ID: 30776198
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cancellous bone and theropod dinosaur locomotion. Part III-Inferring posture and locomotor biomechanics in extinct theropods, and its evolution on the line to birds.
    Bishop PJ; Hocknull SA; Clemente CJ; Hutchinson JR; Farke AA; Barrett RS; Lloyd DG
    PeerJ; 2018; 6():e5777. PubMed ID: 30402346
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Complete forelimb myology of the basal theropod dinosaur Tawa hallae based on a novel robust muscle reconstruction method.
    Burch SH
    J Anat; 2014 Sep; 225(3):271-97. PubMed ID: 25040486
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using step width to compare locomotor biomechanics between extinct, non-avian theropod dinosaurs and modern obligate bipeds.
    Bishop PJ; Clemente CJ; Weems RE; Graham DF; Lamas LP; Hutchinson JR; Rubenson J; Wilson RS; Hocknull SA; Barrett RS; Lloyd DG
    J R Soc Interface; 2017 Jul; 14(132):. PubMed ID: 28724627
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Cancellous bone and theropod dinosaur locomotion. Part I-an examination of cancellous bone architecture in the hindlimb bones of theropods.
    Bishop PJ; Hocknull SA; Clemente CJ; Hutchinson JR; Farke AA; Beck BR; Barrett RS; Lloyd DG
    PeerJ; 2018; 6():e5778. PubMed ID: 30402347
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The influence of speed and size on avian terrestrial locomotor biomechanics: Predicting locomotion in extinct theropod dinosaurs.
    Bishop PJ; Graham DF; Lamas LP; Hutchinson JR; Rubenson J; Hancock JA; Wilson RS; Hocknull SA; Barrett RS; Lloyd DG; Clemente CJ
    PLoS One; 2018; 13(2):e0192172. PubMed ID: 29466362
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Cursoriality in bipedal archosaurs.
    Jones TD; Farlow JO; Ruben JA; Henderson DM; Hillenius WJ
    Nature; 2000 Aug; 406(6797):716-8. PubMed ID: 10963594
    [TBL] [Abstract][Full Text] [Related]  

  • 16. More than one way to be a giant: Convergence and disparity in the hip joints of saurischian dinosaurs.
    Tsai HP; Middleton KM; Hutchinson JR; Holliday CM
    Evolution; 2020 Aug; 74(8):1654-1681. PubMed ID: 32433795
    [TBL] [Abstract][Full Text] [Related]  

  • 17. New insights into non-avian dinosaur reproduction and their evolutionary and ecological implications: linking fossil evidence to allometries of extant close relatives.
    Werner J; Griebeler EM
    PLoS One; 2013; 8(8):e72862. PubMed ID: 23991160
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Shake a tail feather: the evolution of the theropod tail into a stiff aerodynamic surface.
    Pittman M; Gatesy SM; Upchurch P; Goswami A; Hutchinson JR
    PLoS One; 2013; 8(5):e63115. PubMed ID: 23690987
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Basic avian pulmonary design and flow-through ventilation in non-avian theropod dinosaurs.
    O'Connor PM; Claessens LP
    Nature; 2005 Jul; 436(7048):253-6. PubMed ID: 16015329
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The geometry of taking flight: limb morphometrics in Mesozoic theropods.
    Hedrick BP; Manning PL; Lynch ER; Cordero SA; Dodson P
    J Morphol; 2015 Feb; 276(2):152-66. PubMed ID: 25284728
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.