BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38847113)

  • 1. Switchable synthesis of 3-aminoindolines and 2'-aminoarylacetic acids using Grignard reagents and 3-azido-2-hydroxyindolines.
    Yamashiro T; Abe T
    Chem Commun (Camb); 2024 Jun; 60(52):6615-6618. PubMed ID: 38847113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis of primary amines by the electrophilic amination of Grignard reagents with 1,3-dioxolan-2-one O-sulfonyloxime.
    Kitamura M; Suga T; Chiba S; Narasaka K
    Org Lett; 2004 Nov; 6(24):4619-21. PubMed ID: 15548090
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Novel and convenient synthesis of substituted quinolines by copper- or palladium-catalyzed cyclodehydration of 1-(2-aminoaryl)-2-yn-1-ols.
    Gabriele B; Mancuso R; Salerno G; Ruffolo G; Plastina P
    J Org Chem; 2007 Aug; 72(18):6873-7. PubMed ID: 17655259
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Copper-catalyzed electrophilic amination of functionalized diarylzinc reagents.
    Berman AM; Johnson JS
    J Org Chem; 2005 Jan; 70(1):364-6. PubMed ID: 15624951
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Versatile synthesis of quinoline-3-carboxylic esters and indol-2-acetic esters by palladium-catalyzed carbonylation of 1-(2-aminoaryl)-2-yn-1-ols.
    Gabriele B; Mancuso R; Salerno G; Lupinacci E; Ruffolo G; Costa M
    J Org Chem; 2008 Jul; 73(13):4971-7. PubMed ID: 18540650
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Transition-metal-free electrophilic amination between aryl Grignard reagents and N-chloroamines.
    Hatakeyama T; Yoshimoto Y; Ghorai SK; Nakamura M
    Org Lett; 2010 Apr; 12(7):1516-9. PubMed ID: 20222741
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Switchable Synthesis of 2-Methylene-3-aminoindolines and 2-Methyl-3-aminoindoles Using Calcium Carbide as a Solid Alkyne Source.
    Wang Z; Zhang Z; Li Z
    Org Lett; 2022 Nov; 24(43):8067-8071. PubMed ID: 36286597
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Road Map for the Construction of High-Valued
    Roy S; Das SK; Khatua H; Das S; Chattopadhyay B
    Acc Chem Res; 2021 Dec; 54(23):4395-4409. PubMed ID: 34761918
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Amination of grignard reagents with retention of configuration.
    Hoffmann RW; Hölzer B; Knopff O
    Org Lett; 2001 Jun; 3(12):1945-8. PubMed ID: 11405751
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Copper-Free Alternatives to Access Ketone Building Blocks from Grignard Reagents.
    Taeschler C; Kirchner E; Păunescu E; Mayerhöffer U
    ACS Omega; 2022 Feb; 7(4):3613-3617. PubMed ID: 35128268
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Sequential one-pot addition of excess aryl-Grignard reagents and electrophiles to O-alkyl thioformates.
    Murai T; Morikawa K; Maruyama T
    Chemistry; 2013 Sep; 19(39):13112-9. PubMed ID: 23946145
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and reactions of enantiomerically pure α-functionalized Grignard reagents.
    Rayner PJ; O'Brien P; Horan RA
    J Am Chem Soc; 2013 May; 135(21):8071-7. PubMed ID: 23647498
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A method for the synthesis of substituted quinolines via electrophilic cyclization of 1-azido-2-(2-propynyl)benzene.
    Huo Z; Gridnev ID; Yamamoto Y
    J Org Chem; 2010 Feb; 75(4):1266-70. PubMed ID: 20099928
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mechanochemical synthesis of magnesium-based carbon nucleophiles in air and their use in organic synthesis.
    Takahashi R; Hu A; Gao P; Gao Y; Pang Y; Seo T; Jiang J; Maeda S; Takaya H; Kubota K; Ito H
    Nat Commun; 2021 Nov; 12(1):6691. PubMed ID: 34795265
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mechanochemistry-Amended Barbier Reaction as an Expedient Alternative to Grignard Synthesis.
    Varma Nallaparaju J; Nikonovich T; Jarg T; Merzhyievskyi D; Aav R; Kananovich DG
    Angew Chem Int Ed Engl; 2023 Sep; 62(39):e202305775. PubMed ID: 37387203
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalytic highly enantioselective alkylation of aldehydes with deactivated grignard reagents and synthesis of bioactive intermediate secondary arylpropanols.
    Liu Y; Da CS; Yu SL; Yin XG; Wang JR; Fan XY; Li WP; Wang R
    J Org Chem; 2010 Oct; 75(20):6869-78. PubMed ID: 20836546
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct Addition of Grignard Reagents to Aliphatic Carboxylic Acids Enabled by Bulky turbo-Organomagnesium Anilides.
    Colas K; V D Dos Santos AC; Kohlhepp SV; Mendoza A
    Chemistry; 2022 Feb; 28(9):e202104053. PubMed ID: 35084063
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Addition of allyl Grignard to nitriles in air and at room temperature: experimental and computational mechanistic insights in pH-switchable synthesis.
    Parra-Cadenas B; Fernández I; Carrillo-Hermosilla F; García-Álvarez J; Elorriaga D
    Chem Sci; 2024 Apr; 15(16):5929-5937. PubMed ID: 38665519
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy Grignard Reagents: Synthesis, Physical and Structural Properties, Chemical Behavior, and Reactivity.
    Westerhausen M; Koch A; Görls H; Krieck S
    Chemistry; 2017 Jan; 23(7):1456-1483. PubMed ID: 27976821
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In Situ Generation of Magnesium- and Calcium-Based Grignard Reagents for Amide Synthesis.
    Schüler P; Sengupta S; Krieck S; Westerhausen M
    Chemistry; 2023 Jul; 29(40):e202300833. PubMed ID: 37190951
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.