These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
115 related articles for article (PubMed ID: 38847151)
1. Assessment of hydrocarbon degradation capacity and kinetic modeling of Abbas M; Ni L; Du C Int J Phytoremediation; 2024; 26(12):1914-1922. PubMed ID: 38847151 [TBL] [Abstract][Full Text] [Related]
2. Potential of the green alga Chlorella vulgaris for biodegradation of crude oil hydrocarbons. Xaaldi Kalhor A; Movafeghi A; Mohammadi-Nassab AD; Abedi E; Bahrami A Mar Pollut Bull; 2017 Oct; 123(1-2):286-290. PubMed ID: 28844453 [TBL] [Abstract][Full Text] [Related]
3. Cultivating Chlorella vulgaris and Scenedesmus quadricauda microalgae to degrade inorganic compounds and pesticides in water. Baglieri A; Sidella S; Barone V; Fragalà F; Silkina A; Nègre M; Gennari M Environ Sci Pollut Res Int; 2016 Sep; 23(18):18165-74. PubMed ID: 27259964 [TBL] [Abstract][Full Text] [Related]
4. Evaluation of Growth and Production of High-Value-Added Metabolites in Korozi E; Kefalogianni I; Tsagou V; Chatzipavlidis I; Markou G; Karnaouri A Foods; 2023 Aug; 12(16):. PubMed ID: 37628067 [TBL] [Abstract][Full Text] [Related]
5. Physiological and enzymatic responses of Chlorella vulgaris exposed to produced water and its potential for bioremediation. Calderón-Delgado IC; Mora-Solarte DA; Velasco-Santamaría YM Environ Monit Assess; 2019 May; 191(6):399. PubMed ID: 31134347 [TBL] [Abstract][Full Text] [Related]
6. Enhancing bioremediation potential of microalgae Chlorella vulgaris and Scenedesmus acutus by NaCl for pyrene degradation. Tomar RS; Rai-Kalal P; Jajoo A Biodegradation; 2024 Aug; 35(5):687-699. PubMed ID: 38416268 [TBL] [Abstract][Full Text] [Related]
7. RNA-seq analysis reveals the significant effects of different light conditions on oil degradation by marine Chlorella vulgaris. Li J; Chen Q; Bao B; Liu M; Bao M; Liu J; Mu J Mar Pollut Bull; 2018 Dec; 137():267-276. PubMed ID: 30503435 [TBL] [Abstract][Full Text] [Related]
8. Removal of polycyclic aromatic hydrocarbons (PAHs) from produced water using the microalgae Chlorella vulgaris cultivated in mixotrophic and heterotrophic conditions. Ñañez KB; Rios Ramirez KD; Cordeiro de Oliveira OM; Reyes CY; Andrade Moreira ÍT Chemosphere; 2024 May; 356():141931. PubMed ID: 38614391 [TBL] [Abstract][Full Text] [Related]
9. Higher biomolecules yield in phytoplankton under copper exposure. Silva JC; Echeveste P; Lombardi AT Ecotoxicol Environ Saf; 2018 Oct; 161():57-63. PubMed ID: 29859408 [TBL] [Abstract][Full Text] [Related]
10. Carbon-dioxide biofixation and phycoremediation of municipal wastewater using Chlorella vulgaris and Scenedesmus obliquus. Chaudhary R; Dikshit AK; Tong YW Environ Sci Pollut Res Int; 2018 Jul; 25(21):20399-20406. PubMed ID: 28656576 [TBL] [Abstract][Full Text] [Related]
11. Biodiesel production in crude oil contaminated environment using Chlorella vulgaris. Xaaldi Kalhor A; Mohammadi Nassab AD; Abedi E; Bahrami A; Movafeghi A Bioresour Technol; 2016 Dec; 222():190-194. PubMed ID: 27718401 [TBL] [Abstract][Full Text] [Related]
12. Bio oil production from microalgae via hydrothermal liquefaction technology under subcritical water conditions. Kiran Kumar P; Vijaya Krishna S; Verma K; Pooja K; Bhagawan D; Srilatha K; Himabindu V J Microbiol Methods; 2018 Oct; 153():108-117. PubMed ID: 30248442 [TBL] [Abstract][Full Text] [Related]
13. A study into the species sensitivity of green algae towards imidazolium-based ionic liquids using flow cytometry. Deng Y; Beadham I; Ren HY; Ji MM; Ruan WQ Ecotoxicol Environ Saf; 2020 May; 194():110392. PubMed ID: 32171965 [TBL] [Abstract][Full Text] [Related]
14. Sequential cultivation of microalgae in raw and recycled dairy wastewater: Microalgal growth, wastewater treatment and biochemical composition. Daneshvar E; Zarrinmehr MJ; Koutra E; Kornaros M; Farhadian O; Bhatnagar A Bioresour Technol; 2019 Feb; 273():556-564. PubMed ID: 30476864 [TBL] [Abstract][Full Text] [Related]
15. Influence of organic matter and CO Saavedra R; Muñoz R; Taboada ME; Bolado S Ecotoxicol Environ Saf; 2019 Oct; 182():109393. PubMed ID: 31299473 [TBL] [Abstract][Full Text] [Related]
16. Efficacy of Chlorella pyrenoidosa and Scenedesmus abundans for Nutrient Removal in Rice Mill Effluent (Paddy Soaked Water). Abinandan S; Bhattacharya R; Shanthakumar S Int J Phytoremediation; 2015; 17(1-6):377-81. PubMed ID: 25409251 [TBL] [Abstract][Full Text] [Related]
17. Acute toxicity of textile dye Methylene blue on growth and metabolism of selected freshwater microalgae. Krishna Moorthy A; Govindarajan Rathi B; Shukla SP; Kumar K; Shree Bharti V Environ Toxicol Pharmacol; 2021 Feb; 82():103552. PubMed ID: 33246139 [TBL] [Abstract][Full Text] [Related]
18. Quantitative modelling reservoir microalgae proliferation in response to water-soluble anions and cations influx. Zhang T; Zhang D; Mkandawire V; Feng A Bioresour Technol; 2024 Apr; 397():130451. PubMed ID: 38369079 [TBL] [Abstract][Full Text] [Related]
19. Biodegradation of naproxen by freshwater algae Cymbella sp. and Scenedesmus quadricauda and the comparative toxicity. Ding T; Lin K; Yang B; Yang M; Li J; Li W; Gan J Bioresour Technol; 2017 Aug; 238():164-173. PubMed ID: 28433904 [TBL] [Abstract][Full Text] [Related]
20. Change in Photosystem II Photochemistry During Algal Growth Phases of Chlorella vulgaris and Scenedesmus obliquus. Oukarroum A Curr Microbiol; 2016 Jun; 72(6):692-9. PubMed ID: 26868257 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]