These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38847187)

  • 1. The facile and controllable synthesis of ultrafine Sn nanocrystals loaded on carbon black for high-performance lithium storage.
    Zhao Y; Li G; Kong X; Zhao X; Liu L; Wang S; Li G; Zhang M; Liu Z; Yang P
    ChemSusChem; 2024 Jun; ():e202301807. PubMed ID: 38847187
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafine aluminum sulfide nanocrystals anchored on two-dimensional carbon sheets for high-performance lithium-ion batteries.
    Wang S; Wang T; Kong X; Zhao X; Gan H; Wang X; Meng Q; He F; Yang P; Liu Z
    J Colloid Interface Sci; 2023 Jan; 630(Pt A):204-211. PubMed ID: 36242880
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Superb Li-Ion Storage of Sn-Based Anode Assisted by Conductive Hybrid Buffering Matrix.
    Shin J; Park SH; Hur J
    Nanomaterials (Basel); 2023 Oct; 13(20):. PubMed ID: 37887908
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nanostructure Sn/C Composite High-Performance Negative Electrode for Lithium Storage.
    Saddique J; Shen H; Ge J; Huo X; Rahman N; Ahmadi AAA; Mushtaq M
    Molecules; 2022 Jun; 27(13):. PubMed ID: 35807325
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Facile Synthesis of Layer Structured GeP
    Qi W; Zhao H; Wu Y; Zeng H; Tao T; Chen C; Kuang C; Zhou S; Huang Y
    Sci Rep; 2017 Feb; 7():43582. PubMed ID: 28240247
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Upcycling of Electroplating Sludge into Ultrafine Sn@C Nanorods with Highly Stable Lithium Storage Performance.
    Ye X; Lin Z; Liang S; Huang X; Qiu X; Qiu Y; Liu X; Xie D; Deng H; Xiong X; Lin Z
    Nano Lett; 2019 Mar; 19(3):1860-1866. PubMed ID: 30676748
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Sn⁴⁺ Ion Decorated Highly Conductive Ti3C2 MXene: Promising Lithium-Ion Anodes with Enhanced Volumetric Capacity and Cyclic Performance.
    Luo J; Tao X; Zhang J; Xia Y; Huang H; Zhang L; Gan Y; Liang C; Zhang W
    ACS Nano; 2016 Feb; 10(2):2491-9. PubMed ID: 26836262
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MOF-derived porous carbon nanofibers wrapping Sn nanoparticles as flexible anodes for lithium/sodium ion batteries.
    Zhu S; Huang A; Wang Q; Xu Y
    Nanotechnology; 2021 Apr; 32(16):165401. PubMed ID: 33406509
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Self-Assembled Framework Formed During Lithiation of SnS
    Yin K; Zhang M; Hood ZD; Pan J; Meng YS; Chi M
    Acc Chem Res; 2017 Jul; 50(7):1513-1520. PubMed ID: 28682057
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Facile synthesis of Ge@C core-shell nanocomposites for high-performance lithium storage in lithium-ion batteries.
    Wang Y; Wang G
    Chem Asian J; 2013 Dec; 8(12):3142-6. PubMed ID: 24006143
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phosphorus-doped TiO
    Ko WY; Wu TC; He SY; Lin KJ
    Nanotechnology; 2024 Feb; 35(17):. PubMed ID: 38271726
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MOF-derived ultrafine MnO nanocrystals embedded in a porous carbon matrix as high-performance anodes for lithium-ion batteries.
    Zheng F; Xia G; Yang Y; Chen Q
    Nanoscale; 2015 Jun; 7(21):9637-45. PubMed ID: 25955439
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Facile Synthesis of Sn/Nitrogen-Doped Reduced Graphene Oxide Nanocomposites with Superb Lithium Storage Properties.
    Sun Q; Huang Y; Wu S; Gao Z; Liu H; Hu P; Qie L
    Nanomaterials (Basel); 2019 Jul; 9(8):. PubMed ID: 31357731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Synthesis of MnO-Sn cubes embedding in nitrogen-doped carbon nanofibers with high lithium-ion storage performance.
    Lu L; Zhang B; Song J; Gao H; Wu Z; Shen H; Li Y; Lei W; Hao Q
    Nanotechnology; 2021 Dec; 33(11):. PubMed ID: 34874284
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Uniform nano-Sn/C composite anodes for lithium ion batteries.
    Xu Y; Liu Q; Zhu Y; Liu Y; Langrock A; Zachariah MR; Wang C
    Nano Lett; 2013 Feb; 13(2):470-4. PubMed ID: 23282084
    [TBL] [Abstract][Full Text] [Related]  

  • 16. One-step thermolysis synthesis of two-dimensional ultrafine Fe3O4 particles/carbon nanonetworks for high-performance lithium-ion batteries.
    Zhang W; Li X; Liang J; Tang K; Zhu Y; Qian Y
    Nanoscale; 2016 Feb; 8(8):4733-41. PubMed ID: 26859122
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Precise Construction of Sn/C Composite Membrane with Graphene-Like Sn-in-Carbon Structural Units toward Hyperstable Anode for Lithium Storage.
    Ding C; Li S; Zeng X; Wang W; Wang M; Liu T; Liang C
    ACS Appl Mater Interfaces; 2023 Mar; 15(9):12189-12201. PubMed ID: 36812463
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A hierarchical tin/carbon composite as an anode for lithium-ion batteries with a long cycle life.
    Huang X; Cui S; Chang J; Hallac PB; Fell CR; Luo Y; Metz B; Jiang J; Hurley PT; Chen J
    Angew Chem Int Ed Engl; 2015 Jan; 54(5):1490-3. PubMed ID: 25504807
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In situ one-pot synthesis of Sn/lignite-based porous carbon composite for enhanced lithium storage.
    Zhu J; Zhang Z; Ding X; Cao JP; Hu G
    J Colloid Interface Sci; 2021 Apr; 587():367-375. PubMed ID: 33360906
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In-situ synthesis of Fe
    Zhang X; Gao X; Li J; Hong K; Wu L; Xu S; Zhang K; Liu C; Rao Z
    J Colloid Interface Sci; 2020 Nov; 579():699-706. PubMed ID: 32663658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.