These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 38847248)

  • 61. Retrograded starch/pectin coated gellan gum-microparticles for oral administration of insulin: A technological platform for protection against enzymatic degradation and improvement of intestinal permeability.
    Meneguin AB; Beyssac E; Garrait G; Hsein H; Cury BSF
    Eur J Pharm Biopharm; 2018 Feb; 123():84-94. PubMed ID: 29175551
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Prolonged antidiabetic effect of zinc-crystallized insulin loaded glycol chitosan nanoparticles in type 1 diabetic rats.
    Jo HG; Min KH; Nam TH; Na SJ; Park JH; Jeong SY
    Arch Pharm Res; 2008 Jul; 31(7):918-23. PubMed ID: 18704336
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Insulin-loaded alginic acid nanoparticles for sublingual delivery.
    Patil NH; Devarajan PV
    Drug Deliv; 2016; 23(2):429-36. PubMed ID: 24901208
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Nanolayer encapsulation of insulin-chitosan complexes improves efficiency of oral insulin delivery.
    Song L; Zhi ZL; Pickup JC
    Int J Nanomedicine; 2014; 9():2127-36. PubMed ID: 24833901
    [TBL] [Abstract][Full Text] [Related]  

  • 65. The stability of insulin in biodegradable microparticles based on blends of lactide polymers and polyethylene glycol.
    Yeh MK
    J Microencapsul; 2000; 17(6):743-56. PubMed ID: 11063421
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Effect of poly (ethylene glycol) molecular weight and microparticle size on oral insulin delivery from P(MAA-g-EG) microparticles.
    López JE; Peppas NA
    Drug Dev Ind Pharm; 2004 May; 30(5):497-504. PubMed ID: 15244085
    [TBL] [Abstract][Full Text] [Related]  

  • 67. [Enhancement of gastrointestinal absorption of chitosan-coated insulin-loaded poly (lactic-co-glycolic acid) nanoparticles].
    Pan Y; Li YJ; Gao P; Ding PT; Xu H; Zheng JM
    Yao Xue Xue Bao; 2003 Jun; 38(6):467-70. PubMed ID: 14513811
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Preparation and in vitro/in vivo evaluation of insulin-loaded poly(acryloyl-hydroxyethyl starch)-PLGA composite microspheres.
    Jiang G; Qiu W; DeLuca PP
    Pharm Res; 2003 Mar; 20(3):452-9. PubMed ID: 12669968
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Enteric-coated insulin microparticles delivered by lipopeptides of iturin and surfactin.
    Xing X; Zhao X; Ding J; Liu D; Qi G
    Drug Deliv; 2018 Nov; 25(1):23-34. PubMed ID: 29226733
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Biodegradable triblock copolymer microspheres based on thermosensitive sol-gel transition.
    Kwon YM; Kim SW
    Pharm Res; 2004 Feb; 21(2):339-43. PubMed ID: 15032317
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Oral peptide delivery: in-vitro evaluation of thiolated alginate/poly(acrylic acid) microparticles.
    Greimel A; Werle M; Bernkop-Schnürch A
    J Pharm Pharmacol; 2007 Sep; 59(9):1191-8. PubMed ID: 17883889
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Efficacy of mucoadhesive hydrogel microparticles of whey protein and alginate for oral insulin delivery.
    Déat-Lainé E; Hoffart V; Garrait G; Jarrige JF; Cardot JM; Subirade M; Beyssac E
    Pharm Res; 2013 Mar; 30(3):721-34. PubMed ID: 23093377
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Nanoparticles with surface features of dendritic oligopeptides as potential oral drug delivery systems.
    Bai Y; Zhou R; Wu L; Zheng Y; Liu X; Wu R; Li X; Huang Y
    J Mater Chem B; 2020 Apr; 8(13):2636-2649. PubMed ID: 32129375
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Development of polysaccharide-coated layered double hydroxide nanocomposites for enhanced oral insulin delivery.
    Pang H; Wu Y; Chen Y; Chen C; Nie X; Li P; Huang G; Xu ZP; Han FY
    Drug Deliv Transl Res; 2024 Sep; 14(9):2345-2355. PubMed ID: 38214820
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Enhancement of absorption of insulin-loaded polyisobutylcyanoacrylate nanospheres by sodium cholate after oral and subcutaneous administration in diabetic rats.
    Radwan MA
    Drug Dev Ind Pharm; 2001 Oct; 27(9):981-9. PubMed ID: 11763477
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Evaluation of the properties of Gongronema latifolium in phospholipon 90H based solid lipid microparticles (SLMs): an antidiabetic study.
    Chime SA; Onyishi IV; Ugwoke PU; Attama AA
    J Diet Suppl; 2014 Mar; 11(1):7-18. PubMed ID: 24409977
    [TBL] [Abstract][Full Text] [Related]  

  • 77. HP55-coated capsule containing PLGA/RS nanoparticles for oral delivery of insulin.
    Wu ZM; Zhou L; Guo XD; Jiang W; Ling L; Qian Y; Luo KQ; Zhang LJ
    Int J Pharm; 2012 Apr; 425(1-2):1-8. PubMed ID: 22248666
    [TBL] [Abstract][Full Text] [Related]  

  • 78. Protective properties of mesocellular silica foams against aggregation and enzymatic hydrolysis of loaded proteins for oral protein delivery.
    He Y; Wang M; Zhang H; Zhang Y; Gao Y; Wang S
    J Colloid Interface Sci; 2020 Feb; 560():690-700. PubMed ID: 31706652
    [TBL] [Abstract][Full Text] [Related]  

  • 79. BÜCHI nano spray dryer B-90: a promising technology for the production of metformin hydrochloride-loaded alginate-gelatin nanoparticles.
    Shehata TM; Ibrahima MM
    Drug Dev Ind Pharm; 2019 Dec; 45(12):1907-1914. PubMed ID: 31621436
    [TBL] [Abstract][Full Text] [Related]  

  • 80. Influence of polymers ratio on insulin-loaded nanoparticles based on poly-epsilon-caprolactone and Eudragit RS for oral administration.
    Socha M; Sapin A; Damgé C; Maincent P
    Drug Deliv; 2009 Nov; 16(8):430-6. PubMed ID: 19839787
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.