These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 38847403)

  • 21. Scalable Compliant Graphene Fiber-Based Thermal Interface Material with Metal-Level Thermal Conductivity via Dual-Field Synergistic Alignment Engineering.
    Lu J; Ming X; Cao M; Liu Y; Wang B; Shi H; Hao Y; Zhang P; Li K; Wang L; Li P; Gao W; Cai S; Sun B; Yu ZZ; Xu Z; Gao C
    ACS Nano; 2024 Jul; 18(28):18560-18571. PubMed ID: 38941591
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Metal-Level Thermally Conductive yet Soft Graphene Thermal Interface Materials.
    Dai W; Ma T; Yan Q; Gao J; Tan X; Lv L; Hou H; Wei Q; Yu J; Wu J; Yao Y; Du S; Sun R; Jiang N; Wang Y; Kong J; Wong C; Maruyama S; Lin CT
    ACS Nano; 2019 Oct; 13(10):11561-11571. PubMed ID: 31550125
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Aluminum/Graphene Thermal Interface Materials with Positive Temperature Dependence.
    Cai W; Lu Y; Wang C; Li Q; Zheng Y
    ACS Appl Mater Interfaces; 2024 Jul; 16(26):33993-34000. PubMed ID: 38910293
    [TBL] [Abstract][Full Text] [Related]  

  • 24. A Comparative Study of Thermal Aging Effect on the Properties of Silicone-Based and Silicone-Free Thermal Gap Filler Materials.
    Chowdhury ASMR; Rabby MM; Kabir M; Das PP; Bhandari R; Raihan R; Agonafer D
    Materials (Basel); 2021 Jun; 14(13):. PubMed ID: 34202198
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Chemically linked metal-matrix nanocomposites of boron nitride nanosheets and silver as thermal interface materials.
    Nagabandi N; Yegin C; Feng X; King C; Oh JK; Scholar EA; Narumanchi S; Akbulut M
    Nanotechnology; 2018 Mar; 29(10):105706. PubMed ID: 29315082
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Millefeuille-Inspired Thermal Interface Materials based on Double Self-Assembly Technique for Efficient Microelectronic Cooling and Electromagnetic Interference Shielding.
    Gao Y; Bao D; Zhang M; Cui Y; Xu F; Shen X; Zhu Y; Wang H
    Small; 2022 Jan; 18(2):e2105567. PubMed ID: 34842337
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Thermal interface materials with graphene fillers: review of the state of the art and outlook for future applications.
    Lewis JS; Perrier T; Barani Z; Kargar F; Balandin AA
    Nanotechnology; 2021 Apr; 32(14):142003. PubMed ID: 33049724
    [TBL] [Abstract][Full Text] [Related]  

  • 28. High performance liquid metal thermal interface materials.
    Chen S; Deng Z; Liu J
    Nanotechnology; 2021 Feb; 32(9):092001. PubMed ID: 33207322
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Highly Thermally Conductive Graphene-Based Thermal Interface Materials with a Bilayer Structure for Central Processing Unit Cooling.
    Wang ZG; Lv JC; Zheng ZL; Du JG; Dai K; Lei J; Xu L; Xu JZ; Li ZM
    ACS Appl Mater Interfaces; 2021 Jun; 13(21):25325-25333. PubMed ID: 34009940
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Boosting the Heat Dissipation Performance of Graphene/Polyimide Flexible Carbon Film via Enhanced Through-Plane Conductivity of 3D Hybridized Structure.
    Li Y; Zhu Y; Jiang G; Cano ZP; Yang J; Wang J; Liu J; Chen X; Chen Z
    Small; 2020 Feb; 16(8):e1903315. PubMed ID: 31999051
    [TBL] [Abstract][Full Text] [Related]  

  • 31. RGO and Three-Dimensional Graphene Networks Co-modified TIMs with High Performances.
    Bo T; Zhengwei W; Huang W; Sen L; Tingting M; Haogang Y; Xufei L
    Nanoscale Res Lett; 2017 Sep; 12(1):527. PubMed ID: 28875303
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Metal-Organic-Inorganic Nanocomposite Thermal Interface Materials with Ultralow Thermal Resistances.
    Yegin C; Nagabandi N; Feng X; King C; Catalano M; Oh JK; Talib AJ; Scholar EA; Verkhoturov SV; Cagin T; Sokolov AV; Kim MJ; Matin K; Narumanchi S; Akbulut M
    ACS Appl Mater Interfaces; 2017 Mar; 9(11):10120-10127. PubMed ID: 28240857
    [TBL] [Abstract][Full Text] [Related]  

  • 33. High-Quality Boron Nitride Nanosheets and Their Bioinspired Thermally Conductive Papers.
    Zhao HR; Ding JH; Shao ZZ; Xu BY; Zhou QB; Yu HB
    ACS Appl Mater Interfaces; 2019 Oct; 11(40):37247-37255. PubMed ID: 31508934
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Deterministic Manipulation of Heat Flow via Three-Dimensional-Printed Thermal Meta-Materials for Multiple Protection of Critical Components.
    Yang S; Zhang Y; Sha Z; Huang Z; Wang H; Wang F; Li J
    ACS Appl Mater Interfaces; 2022 Aug; 14(34):39354-39363. PubMed ID: 35984869
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Simultaneously enhanced dielectric properties and through-plane thermal conductivity of epoxy composites with alumina and boron nitride nanosheets.
    Wang Z; Meng G; Wang L; Tian L; Chen S; Wu G; Kong B; Cheng Y
    Sci Rep; 2021 Jan; 11(1):2495. PubMed ID: 33510309
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Self-Modifying Nanointerface Driving Ultrahigh Bidirectional Thermal Conductivity Boron Nitride-Based Composite Flexible Films.
    Huang T; Zhang X; Wang T; Zhang H; Li Y; Bao H; Chen M; Wu L
    Nanomicro Lett; 2022 Nov; 15(1):2. PubMed ID: 36441263
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Paper-Like Inorganic Thermal Interface Material Composed of Hierarchically Structured Graphene/Silicon Carbide Nanorods.
    Dai W; Lv L; Lu J; Hou H; Yan Q; Alam FE; Li Y; Zeng X; Yu J; Wei Q; Xu X; Wu J; Jiang N; Du S; Sun R; Xu J; Wong CP; Lin CT
    ACS Nano; 2019 Feb; 13(2):1547-1554. PubMed ID: 30726676
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Graphene and 2D Hexagonal Boron Nitride Heterostructure for Thermal Management in Actively Tunable Manner.
    Sun H; Jiang Y; Hua R; Huang R; Shi L; Dong Y; Liang S; Ni J; Zhang C; Dong R; Song Y
    Nanomaterials (Basel); 2022 Nov; 12(22):. PubMed ID: 36432343
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence from defects of three-dimensional graphene networks on the interface condition between the graphene basal plane and various resins.
    Tang B; Chen H; Sun Y; Li M; Wang Z; Yu H; Ma T; Li S
    RSC Adv; 2018 Aug; 8(49):27811-27817. PubMed ID: 35542701
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Graphene-Based Hybrid Composites for Efficient Thermal Management of Electronic Devices.
    Shtein M; Nadiv R; Buzaglo M; Regev O
    ACS Appl Mater Interfaces; 2015 Oct; 7(42):23725-30. PubMed ID: 26445279
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.