These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 38847592)

  • 21. Decision-directed speech power spectral density matrix estimation for multichannel speech enhancement.
    Jin YG; Shin JW; Kim NS
    J Acoust Soc Am; 2017 Mar; 141(3):EL228. PubMed ID: 28372120
    [TBL] [Abstract][Full Text] [Related]  

  • 22. A spectral/temporal method for robust fundamental frequency tracking.
    Zahorian SA; Hu H
    J Acoust Soc Am; 2008 Jun; 123(6):4559-71. PubMed ID: 18537404
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Real-time dual-channel speech enhancement by VAD assisted MVDR beamformer for hearing aid applications using smartphone.
    Shankar N; Bhat GS; Panahi IMS
    Annu Int Conf IEEE Eng Med Biol Soc; 2020 Jul; 2020():952-955. PubMed ID: 33018142
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Complex Spectral Mapping for Single- and Multi-Channel Speech Enhancement and Robust ASR.
    Wang ZQ; Wang P; Wang D
    IEEE/ACM Trans Audio Speech Lang Process; 2020; 28():1778-1787. PubMed ID: 33748326
    [TBL] [Abstract][Full Text] [Related]  

  • 25. On pre-image iterations for speech enhancement.
    Leitner C; Pernkopf F
    Springerplus; 2015; 4():243. PubMed ID: 26085973
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Influence of MVDR beamformer on a Speech Enhancement based Smartphone application for Hearing Aids.
    Shankar N; Kucuk A; Reddy CKA; Bhat GS; Panahi IMS
    Annu Int Conf IEEE Eng Med Biol Soc; 2018 Jul; 2018():417-420. PubMed ID: 30440422
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Noise estimation in voice signals using short-term cepstral analysis.
    Murphy PJ; Akande OO
    J Acoust Soc Am; 2007 Mar; 121(3):1679-90. PubMed ID: 17407904
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Empirical Bayes based relative impulse response estimation.
    Giri R; Srikrishnan TA; Rao BD; Zhang T
    J Acoust Soc Am; 2018 Jun; 143(6):3922. PubMed ID: 29960466
    [TBL] [Abstract][Full Text] [Related]  

  • 29. A temporal-analysis-based pitch estimation system for noisy speech with a comparative study of performance of recent systems.
    Khurshid A; Denham SL
    IEEE Trans Neural Netw; 2004 Sep; 15(5):1112-24. PubMed ID: 18238086
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A cross-spectrum weighting algorithm for speech enhancement and array processing: combining phase-shift information and stationary signal properties.
    Schwetz I; Gruhler G; Obermayer K
    J Acoust Soc Am; 2006 Feb; 119(2):952-64. PubMed ID: 16521757
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Formant Frequency-based Speech Enhancement Technique to improve Intelligibility for hearing aid users with smartphone as an assistive device.
    Bhat GS; Shankar N; Reddy CKA; Panahi IMS
    Health Innov Point Care Conf; 2017 Nov; 2017():32-35. PubMed ID: 32705090
    [TBL] [Abstract][Full Text] [Related]  

  • 32. End-to-End Deep Convolutional Recurrent Models for Noise Robust Waveform Speech Enhancement.
    Ullah R; Wuttisittikulkij L; Chaudhary S; Parnianifard A; Shah S; Ibrar M; Wahab FE
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298131
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Robust Speech Rate Estimation for Spontaneous Speech.
    Wang D; Narayanan SS
    IEEE Trans Audio Speech Lang Process; 2007 Nov; 15(8):2190-2201. PubMed ID: 20428476
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Enabling Real-Time On-Chip Audio Super Resolution for Bone-Conduction Microphones.
    Li Y; Wang Y; Liu X; Shi Y; Patel S; Shih SF
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616633
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Speech Enhancement Using Gaussian Scale Mixture Models.
    Hao J; Lee TW; Sejnowski TJ
    IEEE Trans Audio Speech Lang Process; 2010 Aug; 18(6):1127-1136. PubMed ID: 21359139
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Single-ended prediction of listening effort using deep neural networks.
    Huber R; Krüger M; Meyer BT
    Hear Res; 2018 Mar; 359():40-49. PubMed ID: 29373159
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Deep causal speech enhancement and recognition using efficient long-short term memory Recurrent Neural Network.
    Li Z; Basit A; Daraz A; Jan A
    PLoS One; 2024; 19(1):e0291240. PubMed ID: 38170703
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The benefit of combining a deep neural network architecture with ideal ratio mask estimation in computational speech segregation to improve speech intelligibility.
    Bentsen T; May T; Kressner AA; Dau T
    PLoS One; 2018; 13(5):e0196924. PubMed ID: 29763459
    [TBL] [Abstract][Full Text] [Related]  

  • 39. A Hybrid Speech Enhancement Algorithm for Voice Assistance Application.
    Gnanamanickam J; Natarajan Y; K R SP
    Sensors (Basel); 2021 Oct; 21(21):. PubMed ID: 34770332
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A Laplacian-based MMSE estimator for speech enhancement.
    Chen B; Loizou PC
    Speech Commun; 2007 Feb; 49(2):134-143. PubMed ID: 18037977
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.