These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 38847776)

  • 1. An unsupervised learning model based on CT radiomics features accurately predicts axillary lymph node metastasis in breast cancer patients: diagnostic study.
    Qu L; Mei X; Yi Z; Zou Q; Zhou Q; Zhang D; Zhou M; Pei L; Long Q; Meng J; Zhang H; Chen Q; Yi W
    Int J Surg; 2024 Sep; 110(9):5363-5373. PubMed ID: 38847776
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine Learning Model for Predicting Axillary Lymph Node Metastasis in Clinically Node Positive Breast Cancer Based on Peritumoral Ultrasound Radiomics and SHAP Feature Analysis.
    Wang SR; Cao CL; Du TT; Wang JL; Li J; Li WX; Chen M
    J Ultrasound Med; 2024 Sep; 43(9):1611-1625. PubMed ID: 38808580
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Radiomics model based on features of axillary lymphatic nodes to predict axillary lymphatic node metastasis in breast cancer.
    Tang Y; Che X; Wang W; Su S; Nie Y; Yang C
    Med Phys; 2022 Dec; 49(12):7555-7566. PubMed ID: 35869750
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Nomogram Utilizing ABVS Radiomics and Clinical Factors for Predicting ≤ 3 Positive Axillary Lymph Nodes in HR+ /HER2- Breast Cancer with 1-2 Positive Sentinel Nodes.
    Hu B; Xu Y; Gong H; Tang L; Wang L; Li H
    Acad Radiol; 2024 Jul; 31(7):2684-2694. PubMed ID: 38383259
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Non-invasive prediction of axillary lymph node dissection exemption in breast cancer patients post-neoadjuvant therapy: A radiomics and deep learning analysis on longitudinal DCE-MRI data.
    Yu Y; Chen R; Yi J; Huang K; Yu X; Zhang J; Song C
    Breast; 2024 Oct; 77():103786. PubMed ID: 39137488
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetic resonance imaging radiomics predicts preoperative axillary lymph node metastasis to support surgical decisions and is associated with tumor microenvironment in invasive breast cancer: A machine learning, multicenter study.
    Yu Y; He Z; Ouyang J; Tan Y; Chen Y; Gu Y; Mao L; Ren W; Wang J; Lin L; Wu Z; Liu J; Ou Q; Hu Q; Li A; Chen K; Li C; Lu N; Li X; Su F; Liu Q; Xie C; Yao H
    EBioMedicine; 2021 Jul; 69():103460. PubMed ID: 34233259
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A cutting-edge deep learning-and-radiomics-based ultrasound nomogram for precise prediction of axillary lymph node metastasis in breast cancer patients ≥ 75 years.
    Qian L; Liu X; Zhou S; Zhi W; Zhang K; Li H; Li J; Chang C
    Front Endocrinol (Lausanne); 2024; 15():1323452. PubMed ID: 39072273
    [TBL] [Abstract][Full Text] [Related]  

  • 8. 3D CT Radiomic Analysis Improves Detection of Axillary Lymph Node Metastases Compared to Conventional Features in Patients With Locally Advanced Breast Cancer.
    Barszczyk M; Singh N; Alikhassi A; Van Oirschot M; Kuling G; Kiss A; Gandhi S; Nofech-Mozes S; Look Hong N; Bilbily A; Martel A; Matsuura N; Curpen B
    J Breast Imaging; 2024 Jul; 6(4):397-406. PubMed ID: 38752527
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Multi-modality radiomics model predicts axillary lymph node metastasis of breast cancer using MRI and mammography.
    Wang Q; Lin Y; Ding C; Guan W; Zhang X; Jia J; Zhou W; Liu Z; Bai G
    Eur Radiol; 2024 Sep; 34(9):6121-6131. PubMed ID: 38337068
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The use of longitudinal CT-based radiomics and clinicopathological features predicts the pathological complete response of metastasized axillary lymph nodes in breast cancer.
    Wang J; Tian C; Zheng BJ; Zhang J; Jiao DC; Qu JR; Liu ZZ
    BMC Cancer; 2024 May; 24(1):549. PubMed ID: 38693523
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Prediction of the axillary lymph-node metastatic burden of breast cancer by
    Li Y; Han D; Shen C
    BMC Cancer; 2024 Jun; 24(1):704. PubMed ID: 38849770
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Utilizing multiclassifier radiomics analysis of ultrasound to predict high axillary lymph node tumour burden in node-positive breast cancer patients: a multicentre study.
    Wu J; Ge L; Guo Y; Xu D; Wang Z
    Ann Med; 2024 Dec; 56(1):2395061. PubMed ID: 39193658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Non-invasive prediction model of axillary lymph node status in patients with early-stage breast cancer: a feasibility study based on dynamic contrast-enhanced-MRI radiomics.
    Chen W; Lin G; Kong C; Wu X; Hu Y; Chen M; Xia S; Lu C; Xu M; Ji J
    Br J Radiol; 2024 Feb; 97(1154):439-450. PubMed ID: 38308028
    [TBL] [Abstract][Full Text] [Related]  

  • 14. 3D reconstruction based novel methods are more effective than traditional clinical assessment in breast cancer axillary lymph node metastasis prediction.
    Qu L; Chen Q; Luo N; Zhao P; Zou Q; Mei X; Liu Z; Yi W
    Sci Rep; 2022 Jul; 12(1):12425. PubMed ID: 35858979
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting axillary lymph node metastasis in breast cancer patients: A radiomics-based multicenter approach with interpretability analysis.
    Liu Z; Hong M; Li X; Lin L; Tan X; Liu Y
    Eur J Radiol; 2024 Jul; 176():111522. PubMed ID: 38805883
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Radiomics in cone-beam breast CT for the prediction of axillary lymph node metastasis in breast cancer: a multi-center multi-device study.
    Zhu Y; Ma Y; Zhai Z; Liu A; Wang Y; Zhang Y; Li H; Zhao M; Han P; Yin L; He N; Wu Y; Sechopoulos I; Ye Z; Caballo M
    Eur Radiol; 2024 Apr; 34(4):2576-2589. PubMed ID: 37782338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Prediction of the number of metastatic axillary lymph nodes in breast cancer by radiomic signature based on dynamic contrast-enhanced MRI.
    Li L; Yu T; Sun J; Jiang S; Liu D; Wang X; Zhang J
    Acta Radiol; 2022 Aug; 63(8):1014-1022. PubMed ID: 34162234
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Prediction of breast cancer and axillary positive-node response to neoadjuvant chemotherapy based on multi-parametric magnetic resonance imaging radiomics models.
    Lin Y; Wang J; Li M; Zhou C; Hu Y; Wang M; Zhang X
    Breast; 2024 Aug; 76():103737. PubMed ID: 38696854
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Machine Learning Radiomics-Based Prediction of Non-sentinel Lymph Node Metastasis in Chinese Breast Cancer Patients with 1-2 Positive Sentinel Lymph Nodes: A Multicenter Study.
    Lin G; Chen W; Fan Y; Zhou Y; Li X; Hu X; Cheng X; Chen M; Kong C; Chen M; Xu M; Peng Z; Ji J
    Acad Radiol; 2024 Aug; 31(8):3081-3095. PubMed ID: 38490840
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Could Ultrasound-Based Radiomics Noninvasively Predict Axillary Lymph Node Metastasis in Breast Cancer?
    Qiu X; Jiang Y; Zhao Q; Yan C; Huang M; Jiang T
    J Ultrasound Med; 2020 Oct; 39(10):1897-1905. PubMed ID: 32329142
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.