These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 38847802)

  • 41. CRISPR/Cas9-Based Genome Editing of Transcription Factor Genes in Marchantia polymorpha.
    Sugano SS; Nishihama R
    Methods Mol Biol; 2018; 1830():109-126. PubMed ID: 30043367
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A G-quadruplex motif at the 3' end of sgRNAs improves CRISPR-Cas9 based genome editing efficiency.
    Nahar S; Sehgal P; Azhar M; Rai M; Singh A; Sivasubbu S; Chakraborty D; Maiti S
    Chem Commun (Camb); 2018 Mar; 54(19):2377-2380. PubMed ID: 29450416
    [TBL] [Abstract][Full Text] [Related]  

  • 43. A catalogue of biochemically diverse CRISPR-Cas9 orthologs.
    Gasiunas G; Young JK; Karvelis T; Kazlauskas D; Urbaitis T; Jasnauskaite M; Grusyte MM; Paulraj S; Wang PH; Hou Z; Dooley SK; Cigan M; Alarcon C; Chilcoat ND; Bigelyte G; Curcuru JL; Mabuchi M; Sun Z; Fuchs RT; Schildkraut E; Weigele PR; Jack WE; Robb GB; Venclovas Č; Siksnys V
    Nat Commun; 2020 Nov; 11(1):5512. PubMed ID: 33139742
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Improved prime editing allows for routine predictable gene editing in Physcomitrium patens.
    Perroud PF; Guyon-Debast A; Casacuberta JM; Paul W; Pichon JP; Comeau D; Nogué F
    J Exp Bot; 2023 Oct; 74(19):6176-6187. PubMed ID: 37243510
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Efficient Genome Editing Achieved via Plug-and-Play Adenovirus Piggyback Transport of Cas9/gRNA Complex on Viral Capsid Surface.
    Lu ZH; Li J; Dmitriev IP; Kashentseva EA; Curiel DT
    ACS Nano; 2022 Jul; 16(7):10443-10455. PubMed ID: 35749339
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Orthogonal CRISPR-Cas tools for genome editing, inhibition, and CRISPR recording in zebrafish embryos.
    Takasugi PR; Wang S; Truong KT; Drage EP; Kanishka SN; Higbee MA; Bamidele N; Ojelabi O; Sontheimer EJ; Gagnon JA
    Genetics; 2022 Jan; 220(1):. PubMed ID: 34735006
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Highly efficient DNA-free gene disruption in the agricultural pest Ceratitis capitata by CRISPR-Cas9 ribonucleoprotein complexes.
    Meccariello A; Monti SM; Romanelli A; Colonna R; Primo P; Inghilterra MG; Del Corsano G; Ramaglia A; Iazzetti G; Chiarore A; Patti F; Heinze SD; Salvemini M; Lindsay H; Chiavacci E; Burger A; Robinson MD; Mosimann C; Bopp D; Saccone G
    Sci Rep; 2017 Aug; 7(1):10061. PubMed ID: 28855635
    [TBL] [Abstract][Full Text] [Related]  

  • 48. The Obstacles and Potential Solution Clues of Prime Editing Applications in Tomato.
    Vu TV; Nguyen NT; Kim J; Das S; Lee J; Kim JY
    Biodes Res; 2022; 2022():0001. PubMed ID: 37905201
    [TBL] [Abstract][Full Text] [Related]  

  • 49. High-efficiency prime editing with optimized, paired pegRNAs in plants.
    Lin Q; Jin S; Zong Y; Yu H; Zhu Z; Liu G; Kou L; Wang Y; Qiu JL; Li J; Gao C
    Nat Biotechnol; 2021 Aug; 39(8):923-927. PubMed ID: 33767395
    [TBL] [Abstract][Full Text] [Related]  

  • 50. pegIT - a web-based design tool for prime editing.
    Anderson MV; Haldrup J; Thomsen EA; Wolff JH; Mikkelsen JG
    Nucleic Acids Res; 2021 Jul; 49(W1):W505-W509. PubMed ID: 34060619
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Predicting the efficiency of prime editing guide RNAs in human cells.
    Kim HK; Yu G; Park J; Min S; Lee S; Yoon S; Kim HH
    Nat Biotechnol; 2021 Feb; 39(2):198-206. PubMed ID: 32958957
    [TBL] [Abstract][Full Text] [Related]  

  • 52. SynDesign: web-based prime editing guide RNA design and evaluation tool for saturation genome editing.
    Park J; Yu G; Seo SY; Yang J; Kim HH
    Nucleic Acids Res; 2024 Jul; 52(W1):W121-W125. PubMed ID: 38682594
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Key sequence features of CRISPR RNA for dual-guide CRISPR-Cas9 ribonucleoprotein complexes assembled with wild-type or HiFi Cas9.
    Okada K; Aoki K; Tabei T; Sugio K; Imai K; Bonkohara Y; Kamachi Y
    Nucleic Acids Res; 2022 Mar; 50(5):2854-2871. PubMed ID: 35166844
    [TBL] [Abstract][Full Text] [Related]  

  • 54. CRISPR deactivation in mammalian cells using photocleavable guide RNAs.
    Zou RS; Liu Y; Ha T
    STAR Protoc; 2021 Dec; 2(4):100909. PubMed ID: 34746867
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Optical Control of Genome Editing by Photoactivatable Cas9.
    Otabe T; Nihongaki Y; Sato M
    Methods Mol Biol; 2021; 2312():225-233. PubMed ID: 34228293
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Optimized prime editing in monocot plants using PlantPegDesigner and engineered plant prime editors (ePPEs).
    Jin S; Lin Q; Gao Q; Gao C
    Nat Protoc; 2023 Mar; 18(3):831-853. PubMed ID: 36434096
    [TBL] [Abstract][Full Text] [Related]  

  • 57. CRISPR: development of a technology and its applications.
    Derry WB
    FEBS J; 2021 Jan; 288(2):358-359. PubMed ID: 33300275
    [TBL] [Abstract][Full Text] [Related]  

  • 58. CRISPR/Cas9-Mediated Genome Editing of Trichoderma reesei.
    Zou G; Zhou Z
    Methods Mol Biol; 2021; 2234():87-98. PubMed ID: 33165782
    [TBL] [Abstract][Full Text] [Related]  

  • 59. sgRNA Sequence Motifs Blocking Efficient CRISPR/Cas9-Mediated Gene Editing.
    Graf R; Li X; Chu VT; Rajewsky K
    Cell Rep; 2019 Jan; 26(5):1098-1103.e3. PubMed ID: 30699341
    [TBL] [Abstract][Full Text] [Related]  

  • 60. CRISPR-Cas systems: ushering in the new genome editing era.
    Perez Rojo F; Nyman RKM; Johnson AAT; Navarro MP; Ryan MH; Erskine W; Kaur P
    Bioengineered; 2018; 9(1):214-221. PubMed ID: 29968520
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.