These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

113 related articles for article (PubMed ID: 38848219)

  • 1. Protocol to fabricate a self-adhesive and long-term stable hydrogel for sleep EEG recording.
    Hsieh JC; Yao M; Baird B; Wang H
    STAR Protoc; 2024 Jun; 5(2):103097. PubMed ID: 38848219
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogel Nanoarchitectonics of a Flexible and Self-Adhesive Electrode for Long-Term Wireless Electroencephalogram Recording and High-Accuracy Sustained Attention Evaluation.
    Han Q; Zhang C; Guo T; Tian Y; Song W; Lei J; Li Q; Wang A; Zhang M; Bai S; Yan X
    Adv Mater; 2023 Mar; 35(12):e2209606. PubMed ID: 36620938
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Protocol to fabricate ionic hydrogel with ultra-stretchable and fast self-healing ability in cryogenic environments.
    Wang C; Liu Y; Li Z
    STAR Protoc; 2023 Mar; 4(1):102045. PubMed ID: 36853710
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coregistration of magnetic resonance spectroscopy and polysomnography for sleep analysis in human subjects.
    Tamaki M; Watanabe T; Sasaki Y
    STAR Protoc; 2021 Dec; 2(4):100974. PubMed ID: 34901890
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Protocol for recording the discharge of locus coeruleus neurons in free-moving mice during different sleep-wake stages.
    Liang Y; Shi W; Hu D; Xiang A; Zhang L
    STAR Protoc; 2021 Dec; 2(4):100981. PubMed ID: 34927091
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Preparation of mechanically patterned hydrogels for controlling the self-condensation of cells.
    Matsuzaki T; Kawano Y; Horikiri M; Shimokawa Y; Yamazaki T; Okuma N; Koike H; Kimura M; Kawamura R; Yoneyama Y; Furuichi Y; Hakuno F; Takahashi SI; Nakabayashi S; Okamoto S; Nakauchi H; Taniguchi H; Takebe T; Yoshikawa HY
    STAR Protoc; 2023 Sep; 4(3):102471. PubMed ID: 37515762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Self-Healing, Self-Adhesive Silk Fibroin Conductive Hydrogel as a Flexible Strain Sensor.
    Zheng H; Lin N; He Y; Zuo B
    ACS Appl Mater Interfaces; 2021 Aug; 13(33):40013-40031. PubMed ID: 34375080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Protocol for preparation of a photo-triggering double cross-linked adhesive, antibacterial, and biocompatible hydrogel for wound healing.
    Zhai X; Hu M; Hu H; Yao X; Wei W
    STAR Protoc; 2023 May; 4(2):102315. PubMed ID: 37182205
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A capacitive, biocompatible and adhesive electrode for long-term and cap-free monitoring of EEG signals.
    Lee SM; Kim JH; Byeon HJ; Choi YY; Park KS; Lee SH
    J Neural Eng; 2013 Jun; 10(3):036006. PubMed ID: 23574793
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Protocol for spike-triggered closed-loop auditory stimulation during sleep in patients with epilepsy.
    Ngo HV; Born J; Klinzing JG
    STAR Protoc; 2022 Sep; 3(3):101505. PubMed ID: 35942345
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Protocol for sleep analysis in the brain of genetically modified adult mice.
    Iwasaki K; Hotta-Hirashima N; Funato H; Yanagisawa M
    STAR Protoc; 2021 Dec; 2(4):100982. PubMed ID: 34917975
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Protocol to decode representations from EEG data with intermixed signals using temporal signal decomposition and multivariate pattern-analysis.
    Takács Á; Yu S; Mückschel M; Beste C
    STAR Protoc; 2022 Jun; 3(2):101399. PubMed ID: 35677605
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Protocol to encapsulate cerebral organoids with alginate hydrogel shell to induce volumetric compression.
    Wang Z; Tang X; Khutsishvili D; Sang G; Galan EA; Wang J; Ma S
    STAR Protoc; 2024 Jun; 5(2):102952. PubMed ID: 38555589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Protocol to fabricate wearable stretchable microneedle-based sensors.
    Omar R; Zheng Y; Haick H
    STAR Protoc; 2023 Dec; 4(4):102751. PubMed ID: 37999973
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tissue adhesive hydrogel bioelectronics.
    Li S; Cong Y; Fu J
    J Mater Chem B; 2021 Jun; 9(22):4423-4443. PubMed ID: 33908586
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Antibacterial adhesive self-healing hydrogels to promote diabetic wound healing.
    Chen J; He J; Yang Y; Qiao L; Hu J; Zhang J; Guo B
    Acta Biomater; 2022 Jul; 146():119-130. PubMed ID: 35483628
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Strong and Double-sided Self-Adhesive Hydrogel Sensor.
    Xu R; Lai Y; Liu J; Wei Q; Sheng W; Ma S; Lei Z; Zhou F
    Macromol Rapid Commun; 2023 Sep; 44(17):e2300182. PubMed ID: 37294660
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bio-Inspired Antibacterial Hydrogel Adhesives with High Adhesion Strength.
    Liang L; Qin Z; Dong X; He S; Yao M; Yu Q; Yu C; Liu M; Guo B; Zhang H; Yao F; Li J
    Macromol Rapid Commun; 2022 Sep; 43(17):e2200182. PubMed ID: 35640482
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Plant-inspired adhesive and tough hydrogel based on Ag-Lignin nanoparticles-triggered dynamic redox catechol chemistry.
    Gan D; Xing W; Jiang L; Fang J; Zhao C; Ren F; Fang L; Wang K; Lu X
    Nat Commun; 2019 Apr; 10(1):1487. PubMed ID: 30940814
    [TBL] [Abstract][Full Text] [Related]  

  • 20. EEG recording and analysis for sleep research.
    Campbell IG
    Curr Protoc Neurosci; 2009 Oct; Chapter 10():Unit10.2. PubMed ID: 19802813
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.