BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38848237)

  • 1. Revisiting the Trade-Off Between Accuracy and Robustness Via Weight Distribution of Filters.
    Wei X; Zhao S; Li B
    IEEE Trans Pattern Anal Mach Intell; 2024 Jun; PP():. PubMed ID: 38848237
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mitigating Accuracy-Robustness Trade-Off Via Balanced Multi-Teacher Adversarial Distillation.
    Zhao S; Wang X; Wei X
    IEEE Trans Pattern Anal Mach Intell; 2024 Jun; PP():. PubMed ID: 38889035
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Increasing-Margin Adversarial (IMA) training to improve adversarial robustness of neural networks.
    Ma L; Liang L
    Comput Methods Programs Biomed; 2023 Oct; 240():107687. PubMed ID: 37392695
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Between-Class Adversarial Training for Improving Adversarial Robustness of Image Classification.
    Wang D; Jin W; Wu Y
    Sensors (Basel); 2023 Mar; 23(6):. PubMed ID: 36991962
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Exploring Robust Features for Improving Adversarial Robustness.
    Wang H; Deng Y; Yoo S; Lin Y
    IEEE Trans Cybern; 2024 Apr; PP():. PubMed ID: 38593009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A regularization method to improve adversarial robustness of neural networks for ECG signal classification.
    Ma L; Liang L
    Comput Biol Med; 2022 May; 144():105345. PubMed ID: 35240379
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Progressive Diversified Augmentation for General Robustness of DNNs: A Unified Approach.
    Yu H; Liu A; Li G; Yang J; Zhang C
    IEEE Trans Image Process; 2021; 30():8955-8967. PubMed ID: 34699360
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feature Distillation in Deep Attention Network Against Adversarial Examples.
    Chen X; Weng J; Deng X; Luo W; Lan Y; Tian Q
    IEEE Trans Neural Netw Learn Syst; 2023 Jul; 34(7):3691-3705. PubMed ID: 34739380
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Towards Unified Robustness Against Both Backdoor and Adversarial Attacks.
    Niu Z; Sun Y; Miao Q; Jin R; Hua G
    IEEE Trans Pattern Anal Mach Intell; 2024 Apr; PP():. PubMed ID: 38652616
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Improving Adversarial Robustness via Attention and Adversarial Logit Pairing.
    Li X; Goodman D; Liu J; Wei T; Dou D
    Front Artif Intell; 2021; 4():752831. PubMed ID: 35156010
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Training Robust Deep Neural Networks via Adversarial Noise Propagation.
    Liu A; Liu X; Yu H; Zhang C; Liu Q; Tao D
    IEEE Trans Image Process; 2021; 30():5769-5781. PubMed ID: 34161231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improving Adversarial Robustness of ECG Classification Based on Lipschitz Constraints and Channel Activation Suppression.
    Chen X; Si Y; Zhang Z; Yang W; Feng J
    Sensors (Basel); 2024 May; 24(9):. PubMed ID: 38733060
    [TBL] [Abstract][Full Text] [Related]  

  • 13. GradDiv: Adversarial Robustness of Randomized Neural Networks via Gradient Diversity Regularization.
    Lee S; Kim H; Lee J
    IEEE Trans Pattern Anal Mach Intell; 2023 Feb; 45(2):2645-2651. PubMed ID: 35446760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Learning defense transformations for counterattacking adversarial examples.
    Li J; Zhang S; Cao J; Tan M
    Neural Netw; 2023 Jul; 164():177-185. PubMed ID: 37149918
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Towards improving fast adversarial training in multi-exit network.
    Chen S; Shen H; Wang R; Wang X
    Neural Netw; 2022 Jun; 150():1-11. PubMed ID: 35279625
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Advancing Adversarial Training by Injecting Booster Signal.
    Lee HJ; Yu Y; Ro YM
    IEEE Trans Neural Netw Learn Syst; 2023 Apr; PP():. PubMed ID: 37058386
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Boosting adversarial robustness via self-paced adversarial training.
    He L; Ai Q; Yang X; Ren Y; Wang Q; Xu Z
    Neural Netw; 2023 Oct; 167():706-714. PubMed ID: 37729786
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A Hamiltonian Monte Carlo Method for Probabilistic Adversarial Attack and Learning.
    Wang H; Li G; Liu X; Lin L
    IEEE Trans Pattern Anal Mach Intell; 2022 Apr; 44(4):1725-1737. PubMed ID: 33074803
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interpreting and Improving Adversarial Robustness of Deep Neural Networks With Neuron Sensitivity.
    Zhang C; Liu A; Liu X; Xu Y; Yu H; Ma Y; Li T
    IEEE Trans Image Process; 2021; 30():1291-1304. PubMed ID: 33290221
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Attention-based investigation and solution to the trade-off issue of adversarial training.
    Shao C; Li W; Huo J; Feng Z; Gao Y
    Neural Netw; 2024 Jun; 174():106224. PubMed ID: 38479186
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.