These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

134 related articles for article (PubMed ID: 38848373)

  • 1. Unlocking large memory windows and 16-level data per cell memory operations in hafnia-based ferroelectric transistors.
    Kim IJ; Lee JS
    Sci Adv; 2024 Jun; 10(23):eadn1345. PubMed ID: 38848373
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ferroelectric Transistors for Memory and Neuromorphic Device Applications.
    Kim IJ; Lee JS
    Adv Mater; 2023 Jun; 35(22):e2206864. PubMed ID: 36484488
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Dopant Engineering of Hafnia-Based Ferroelectrics for Long Data Retention and High Thermal Stability.
    Kim IJ; Lee JS
    Small; 2024 Mar; 20(13):e2306871. PubMed ID: 37967323
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Exploring Disturb Characteristics in 2D and 3D Ferroelectric NAND Memory Arrays for Next-Generation Memory Technology.
    Kim IJ; Choi J; Lee JS
    ACS Appl Mater Interfaces; 2024 Jul; 16(26):33763-33770. PubMed ID: 38899561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ferroelectric Hafnia-Based M3D FeTFTs Annealed at Extremely Low Temperatures and TCAM Cells for Computing-in-Memory Applications.
    Joh H; Nam S; Jung M; Shin H; Cho SH; Jeon S
    ACS Appl Mater Interfaces; 2023 Oct; ():. PubMed ID: 37874546
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Power-Delay Area-Efficient Processing-In-Memory Based on Nanocrystalline Hafnia Ferroelectric Field-Effect Transistors.
    Kim G; Ko DH; Kim T; Lee S; Jung M; Lee YK; Lim S; Jo M; Eom T; Shin H; Jeong Y; Jung S; Jeon S
    ACS Appl Mater Interfaces; 2023 Jan; 15(1):1463-1474. PubMed ID: 36576964
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ferroelectric transistors with asymmetric double gate for memory window exceeding 12 V and disturb-free read.
    Mulaosmanovic H; Kleimaier D; Dünkel S; Beyer S; Mikolajick T; Slesazeck S
    Nanoscale; 2021 Oct; 13(38):16258-16266. PubMed ID: 34549741
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A review on morphotropic phase boundary in fluorite-structure hafnia towards DRAM technology.
    Jung M; Gaddam V; Jeon S
    Nano Converg; 2022 Oct; 9(1):44. PubMed ID: 36182997
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CMOS-compatible ferroelectric NAND flash memory for high-density, low-power, and high-speed three-dimensional memory.
    Kim MK; Kim IJ; Lee JS
    Sci Adv; 2021 Jan; 7(3):. PubMed ID: 33523886
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hafnia-Based Ferroelectric Memory: Device Physics Strongly Correlated with Materials Chemistry.
    Choi H; Cho YH; Kim SH; Yang K; Park MH
    J Phys Chem Lett; 2024 Feb; 15(4):983-997. PubMed ID: 38252652
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Flexible Ferroelectric Hafnia-Based Synaptic Transistor by Focused-Microwave Annealing.
    Joh H; Jung M; Hwang J; Goh Y; Jung T; Jeon S
    ACS Appl Mater Interfaces; 2022 Jan; 14(1):1326-1333. PubMed ID: 34928573
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-Thermal-Budget Ferroelectric Field-Effect Transistors Based on CuInP
    Ryu H; Kang J; Park M; Bae B; Zhao Z; Rakheja S; Lee K; Zhu W
    ACS Appl Mater Interfaces; 2023 Nov; 15(46):53671-53677. PubMed ID: 37947841
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Flexible Quasi-van der Waals Ferroelectric Hafnium-Based Oxide for Integrated High-Performance Nonvolatile Memory.
    Liu H; Lu T; Li Y; Ju Z; Zhao R; Li J; Shao M; Zhang H; Liang R; Wang XR; Guo R; Chen J; Yang Y; Ren TL
    Adv Sci (Weinh); 2020 Oct; 7(19):2001266. PubMed ID: 33042746
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ferroelectric-Modulated MoS
    Xu L; Duan Z; Zhang P; Wang X; Zhang J; Shang L; Jiang K; Li Y; Zhu L; Gong Y; Hu Z; Chu J
    ACS Appl Mater Interfaces; 2020 Oct; 12(40):44902-44911. PubMed ID: 32931241
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impact of oxide gate electrode for ferroelectric field-effect transistors with metal-ferroelectric-metal-insulator-semiconductor gate stack using undoped HfO
    Choi SN; Moon SE; Yoon SM
    Nanotechnology; 2021 Feb; 32(8):085709. PubMed ID: 33176285
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-Temperature Nanosecond Laser Process of HZO-IGZO FeFETs toward Monolithic 3D System on Chip Integration.
    Kim D; Jeong H; Pyo G; Heo SJ; Baik S; Kim S; Choi HS; Kwon HJ; Jang JE
    Adv Sci (Weinh); 2024 May; ():e2401250. PubMed ID: 38741378
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Self-polarized Poly(vinylidene fluoride) Ultrathin Film and Its Piezo/Ferroelectric Properties.
    Liu J; Zhao Q; Dong Y; Sun X; Hu Z; Dong H; Hu W; Yan S
    ACS Appl Mater Interfaces; 2020 Jul; 12(26):29818-29825. PubMed ID: 32498506
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Intrinsic memory function of carbon nanotube-based ferroelectric field-effect transistor.
    Fu W; Xu Z; Bai X; Gu C; Wang E
    Nano Lett; 2009 Mar; 9(3):921-5. PubMed ID: 19206218
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Black Phosphorus/Ferroelectric P(VDF-TrFE) Field-Effect Transistors with High Mobility for Energy-Efficient Artificial Synapse in High-Accuracy Neuromorphic Computing.
    Dang Z; Guo F; Duan H; Zhao Q; Fu Y; Jie W; Jin K; Hao J
    Nano Lett; 2023 Jul; 23(14):6752-6759. PubMed ID: 37283505
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Speed up Ferroelectric Organic Transistor Memories by Using Two-Dimensional Molecular Crystalline Semiconductors.
    Song L; Wang Y; Gao Q; Guo Y; Wang Q; Qian J; Jiang S; Wu B; Wang X; Shi Y; Zheng Y; Li Y
    ACS Appl Mater Interfaces; 2017 May; 9(21):18127-18133. PubMed ID: 28493670
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.