BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 38848389)

  • 1. Counterweight mass influences single-leg cycling biomechanics.
    Asmussen MJ; Casto E E; MacInnis MJ; Nigg BM
    PLoS One; 2024; 19(6):e0304136. PubMed ID: 38848389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparison of kinetics, kinematics, and electromyography during single-leg assisted and unassisted cycling.
    Bini RR; Jacques TC; Lanferdini FJ; Vaz MA
    J Strength Cond Res; 2015 Jun; 29(6):1534-41. PubMed ID: 25872025
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Emphasizing one leg facilitates single-leg training using standard cycling equipment.
    Staples TJ; Do-Duc AA; Link JE; Martin JC
    Scand J Med Sci Sports; 2020 Jun; 30(6):1017-1023. PubMed ID: 32077131
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of locomotor muscle fatigue on joint-specific power production during cycling.
    Elmer SJ; Marshall CS; Wehmanen K; Amann M; McDaniel J; Martin DT; Martin JC
    Med Sci Sports Exerc; 2012 Aug; 44(8):1504-11. PubMed ID: 22343616
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Joint Torques and Patellofemoral Force During Single-Leg Assisted and Unassisted Cycling.
    Bini RR; Jacques TC; Vaz MA
    J Sport Rehabil; 2016 Feb; 25(1):40-7. PubMed ID: 25474095
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Leg general muscle moment and power patterns in able-bodied subjects during recumbent cycle ergometry with ankle immobilization.
    Szecsi J; Straube A; Fornusek C
    Med Eng Phys; 2014 Nov; 36(11):1421-7. PubMed ID: 24924382
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Biomechanics of Counterweighted One-Legged Cycling.
    Elmer SJ; McDaniel J; Martin JC
    J Appl Biomech; 2016 Feb; 32(1):78-85. PubMed ID: 26398962
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Single-leg hop testing following fatiguing exercise: reliability and biomechanical analysis.
    Augustsson J; Thomeé R; Lindén C; Folkesson M; Tranberg R; Karlsson J
    Scand J Med Sci Sports; 2006 Apr; 16(2):111-20. PubMed ID: 16533349
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An Adaptive Pedaling Assistive Device for Asymmetric Torque Assistant in Cycling.
    Lozinski J; Heidary SH; Brandon SCE; Komeili A
    Sensors (Basel); 2023 Mar; 23(5):. PubMed ID: 36905050
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noncircular Chainrings Do Not Influence Maximum Cycling Power.
    Leong CH; Elmer SJ; Martin JC
    J Appl Biomech; 2017 Dec; 33(6):410-418. PubMed ID: 28605248
    [TBL] [Abstract][Full Text] [Related]  

  • 11. On the biomechanics of cycling. A study of joint and muscle load during exercise on the bicycle ergometer.
    Ericson M
    Scand J Rehabil Med Suppl; 1986; 16():1-43. PubMed ID: 3468609
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of strength training on the biomechanics and coordination of short-term maximal cycling.
    Burnie L; Barratt P; Davids K; Worsfold P; Wheat JS
    J Sports Sci; 2022 Jun; 40(12):1315-1324. PubMed ID: 35762920
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Symmetrical kinematics does not imply symmetrical kinetics in people with transtibial amputation using cycling model.
    Childers WL; Kogler GF
    J Rehabil Res Dev; 2014; 51(8):1243-54. PubMed ID: 25629527
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Increased Q-Factor increases frontal-plane knee joint loading in stationary cycling.
    Thorsen T; Strohacker K; Weinhandl JT; Zhang S
    J Sport Health Sci; 2020 May; 9(3):258-264. PubMed ID: 32444150
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Pedal trajectory alters maximal single-leg cycling power.
    Martin JC; Lamb SM; Brown NA
    Med Sci Sports Exerc; 2002 Aug; 34(8):1332-6. PubMed ID: 12165689
    [TBL] [Abstract][Full Text] [Related]  

  • 16. On voluntary rhythmic leg movement behaviour and control during pedalling.
    Hansen EA
    Acta Physiol (Oxf); 2015 Jun; 214 Suppl 702():1-18. PubMed ID: 26094819
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A method for biomechanical analysis of bicycle pedalling.
    Hull ML; Jorge M
    J Biomech; 1985; 18(9):631-44. PubMed ID: 4077861
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Force-velocity relationship in cycling revisited: benefit of two-dimensional pedal forces analysis.
    Dorel S; Couturier A; Lacour JR; Vandewalle H; Hautier C; Hug F
    Med Sci Sports Exerc; 2010 Jun; 42(6):1174-83. PubMed ID: 19997017
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Biomechanical changes elicited by an anterior cruciate ligament deficiency during steady rate cycling.
    Hunt MA; Sanderson DJ; Moffet H; Inglis JT
    Clin Biomech (Bristol, Avon); 2003 Jun; 18(5):393-400. PubMed ID: 12763435
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Muscle coordination patterns for efficient cycling.
    Blake OM; Champoux Y; Wakeling JM
    Med Sci Sports Exerc; 2012 May; 44(5):926-38. PubMed ID: 22089483
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.