These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 38848496)

  • 1. The Droplet Creeping-Sliding Dynamic Wetting Mechanism on Bionic Self-Cleaning Surfaces.
    Liu Z; Luo Y; Chen L; Yang Y; Lyu S; Luo Z
    Langmuir; 2024 Jun; 40(24):12602-12612. PubMed ID: 38848496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE
    Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mussel-Inspired Fabrication of an Environment-Friendly and Self-Adhesive Superhydrophobic Polydopamine Coating with Excellent Mechanical Durability, Anti-Icing and Self-Cleaning Performances.
    Tian J; Qi X; Li C; Xian G
    ACS Appl Mater Interfaces; 2023 May; 15(21):26000-26015. PubMed ID: 37192267
    [TBL] [Abstract][Full Text] [Related]  

  • 4. 3D Simulations of Freezing Characteristics of Double-Droplet Impact on Cold Surfaces with Different Wettability.
    Hu A; Yuan Q; Guo K; Wang Z; Liu D
    Entropy (Basel); 2022 Nov; 24(11):. PubMed ID: 36421505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic Melting of Freezing Droplets on Ultraslippery Superhydrophobic Surfaces.
    Chu F; Wu X; Wang L
    ACS Appl Mater Interfaces; 2017 Mar; 9(9):8420-8425. PubMed ID: 28222256
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Surfactant solutions and porous substrates: spreading and imbibition.
    Starov VM
    Adv Colloid Interface Sci; 2004 Nov; 111(1-2):3-27. PubMed ID: 15571660
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Robust Cassie state of wetting in transparent superhydrophobic coatings.
    Tuvshindorj U; Yildirim A; Ozturk FE; Bayindir M
    ACS Appl Mater Interfaces; 2014 Jun; 6(12):9680-8. PubMed ID: 24823960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of Coalescence-Induced Droplet Jumping Height on Hierarchical Superhydrophobic Surfaces.
    Chen X; Weibel JA; Garimella SV
    ACS Omega; 2017 Jun; 2(6):2883-2890. PubMed ID: 31457623
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Nonwet Kingfisher Flying in the Rain: The Tumble of Droplets on Moving Oriented Anisotropic Superhydrophobic Substrates.
    Zheng Y; Zhang C; Wang J; Yang L; Shen C; Han Z; Liu Y
    ACS Appl Mater Interfaces; 2020 Aug; 12(31):35707-35715. PubMed ID: 32640153
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Superhydrophobic ceramic coating: Fabrication by solution precursor plasma spray and investigation of wetting behavior.
    Xu P; Coyle TW; Pershin L; Mostaghimi J
    J Colloid Interface Sci; 2018 Aug; 523():35-44. PubMed ID: 29605739
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Wetting Transition of Condensed Droplets on Nanostructured Superhydrophobic Surfaces: Coordination of Surface Properties and Condensing Conditions.
    Wen R; Lan Z; Peng B; Xu W; Yang R; Ma X
    ACS Appl Mater Interfaces; 2017 Apr; 9(15):13770-13777. PubMed ID: 28362085
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Preparation and Anti-Icing Properties of Zirconia Superhydrophobic Coating.
    Zhou J; Zheng H; Sheng W; Hao X; Zhang X
    Molecules; 2024 Apr; 29(8):. PubMed ID: 38675658
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Anti-Icing or Deicing: Icephobicities of Superhydrophobic Surfaces with Hierarchical Structures.
    Sarshar MA; Song D; Swarctz C; Lee J; Choi CH
    Langmuir; 2018 Nov; 34(46):13821-13827. PubMed ID: 30360623
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exploiting intermediate wetting on superhydrophobic surfaces for efficient icing prevention.
    Keshavarzi S; Momen G; Eberle P; Azimi Yancheshme A; Alvarez NJ; Jafari R
    J Colloid Interface Sci; 2024 Sep; 670():550-562. PubMed ID: 38776690
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Coalescence-Induced Droplet Jumping on Honeycomb Bionic Superhydrophobic Surfaces.
    Gao Y; Ke Z; Yang W; Wang Z; Zhang Y; Wu W
    Langmuir; 2022 Aug; 38(32):9981-9991. PubMed ID: 35917142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of droplet morphology on growth dynamics and heat transfer during condensation on superhydrophobic nanostructured surfaces.
    Miljkovic N; Enright R; Wang EN
    ACS Nano; 2012 Feb; 6(2):1776-85. PubMed ID: 22293016
    [TBL] [Abstract][Full Text] [Related]  

  • 17. How Micro-/Nanostructure Evolution Influences Dynamic Wetting and Natural Deicing Abilities of Bionic Lotus Surfaces.
    Yang Q; Zhu Z; Tan S; Luo Y; Luo Z
    Langmuir; 2020 Apr; 36(15):4005-4014. PubMed ID: 32233373
    [TBL] [Abstract][Full Text] [Related]  

  • 18. How coalescing droplets jump.
    Enright R; Miljkovic N; Sprittles J; Nolan K; Mitchell R; Wang EN
    ACS Nano; 2014 Oct; 8(10):10352-62. PubMed ID: 25171210
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Numerical Investigation on Coalescence-Induced Jumping of Centripetal Moving Droplets.
    Gao S; Wu X
    Langmuir; 2022 Oct; 38(41):12674-12681. PubMed ID: 36201740
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Air Cushion Convection Inhibiting Icing of Self-Cleaning Surfaces.
    Yang Q; Luo Z; Jiang F; Luo Y; Tan S; Lu Z; Zhang Z; Liu W
    ACS Appl Mater Interfaces; 2016 Oct; 8(42):29169-29178. PubMed ID: 27700030
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.