These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 38848582)

  • 1. Unconventional Dually-Mobile Superrepellent Surfaces.
    Fan Y; Wang S; Huang Y; Tan Y; Gui L; Huang S; Tian X
    Adv Mater; 2024 Jul; 36(30):e2402893. PubMed ID: 38848582
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Self-Cleaning of Hydrophobic Rough Surfaces by Coalescence-Induced Wetting Transition.
    Zhang K; Li Z; Maxey M; Chen S; Karniadakis GE
    Langmuir; 2019 Feb; 35(6):2431-2442. PubMed ID: 30640480
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Monostable superrepellent materials.
    Li Y; Quéré D; Lv C; Zheng Q
    Proc Natl Acad Sci U S A; 2017 Mar; 114(13):3387-3392. PubMed ID: 28280098
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Drop Impact on Two-Tier Monostable Superrepellent Surfaces.
    Shi S; Lv C; Zheng Q
    ACS Appl Mater Interfaces; 2019 Nov; 11(46):43698-43707. PubMed ID: 31644872
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Temperature-regulated adhesion of impacting drops on nano/microtextured monostable superrepellent surfaces.
    Shi S; Lv C; Zheng Q
    Soft Matter; 2020 Jun; 16(23):5388-5397. PubMed ID: 32490478
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Slippery Wenzel State.
    Dai X; Stogin BB; Yang S; Wong TS
    ACS Nano; 2015 Sep; 9(9):9260-7. PubMed ID: 26302154
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the Effects of Nanopatterned Surfaces on Wetting States of Droplets.
    Xiao K; Zhao Y; Ouyang G; Li X
    Nanoscale Res Lett; 2017 Dec; 12(1):309. PubMed ID: 28449550
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transition of Liquid Drops on Microstructured Hygrophobic Surfaces from the Impaled Wenzel State to the "Fakir" Cassie-Baxter State.
    Tzitzilis D; Tsekeridis C; Ntakoumis I; Papadopoulos P
    Langmuir; 2024 Jul; 40(26):13422-13427. PubMed ID: 38825812
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Activated Wetting of Nanostructured Surfaces: Reaction Coordinates, Finite Size Effects, and Simulation Pitfalls.
    Amabili M; Meloni S; Giacomello A; Casciola CM
    J Phys Chem B; 2018 Jan; 122(1):200-212. PubMed ID: 29200302
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Squeezing Drops: Force Measurements of the Cassie-to-Wenzel Transition.
    Garcia-Gonzalez D; Corrales TP; Dacunzi M; Kappl M
    Langmuir; 2022 Dec; 38(48):14666-14672. PubMed ID: 36410035
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rationalization of the behavior of solid-liquid surface free energy of water in Cassie and Wenzel wetting states on rugged solid surfaces at the nanometer scale.
    Leroy F; Müller-Plathe F
    Langmuir; 2011 Jan; 27(2):637-45. PubMed ID: 21142209
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Coexistence and transition between Cassie and Wenzel state on pillared hydrophobic surface.
    Koishi T; Yasuoka K; Fujikawa S; Ebisuzaki T; Zeng XC
    Proc Natl Acad Sci U S A; 2009 May; 106(21):8435-40. PubMed ID: 19429707
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Preventing the Cassie-Wenzel transition using surfaces with noncommunicating roughness elements.
    Bahadur V; Garimella SV
    Langmuir; 2009 Apr; 25(8):4815-20. PubMed ID: 19260655
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Elucidating Nonwetting of Re-Entrant Surfaces with Impinging Droplets.
    Zhang B; Zhang X
    Langmuir; 2015 Sep; 31(34):9448-57. PubMed ID: 26270084
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ice nucleation on nanotextured surfaces: the influence of surface fraction, pillar height and wetting states.
    Metya AK; Singh JK; Müller-Plathe F
    Phys Chem Chem Phys; 2016 Sep; 18(38):26796-26806. PubMed ID: 27711467
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fully reversible transition from Wenzel to Cassie-Baxter states on corrugated superhydrophobic surfaces.
    Vrancken RJ; Kusumaatmaja H; Hermans K; Prenen AM; Pierre-Louis O; Bastiaansen CW; Broer DJ
    Langmuir; 2010 Mar; 26(5):3335-41. PubMed ID: 19928892
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Wetting on Micropatterned Surfaces: Partial Penetration in the Cassie State and Wenzel Deviation Theoretically Explained.
    Rohrs C; Azimi A; He P
    Langmuir; 2019 Nov; 35(47):15421-15430. PubMed ID: 31663751
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Liquid-Superrepellent Bioinspired Fibrillar Adhesives.
    Liimatainen V; Drotlef DM; Son D; Sitti M
    Adv Mater; 2020 May; 32(19):e2000497. PubMed ID: 32239584
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Water droplet motion control on superhydrophobic surfaces: exploiting the Wenzel-to-Cassie transition.
    Liu G; Fu L; Rode AV; Craig VS
    Langmuir; 2011 Mar; 27(6):2595-600. PubMed ID: 21322574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effects of hydraulic pressure on the stability and transition of wetting modes of superhydrophobic surfaces.
    Zheng QS; Yu Y; Zhao ZH
    Langmuir; 2005 Dec; 21(26):12207-12. PubMed ID: 16342993
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.