These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

118 related articles for article (PubMed ID: 38848638)

  • 1. An integrated simulation-optimization approach for combined allocation of water quantity and quality under multiple uncertainties.
    Huang Y; Cai Y; Dai C; He Y; Wan H; Guo H; Zhang P
    J Environ Manage; 2024 Jul; 363():121309. PubMed ID: 38848638
    [TBL] [Abstract][Full Text] [Related]  

  • 2. System Dynamics Model for Evaluating Socio-Economic Impacts of Different Water Diversion Quantity from Transboundary River Basins-A Case Study of Xinjiang.
    Shao Z; Wu F; Li F; Zhao Y; Xu X
    Int J Environ Res Public Health; 2020 Dec; 17(23):. PubMed ID: 33291432
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Simulation-based interval chance-constrained quadratic programming model for water quality management: A case study of the central Grand River in Ontario, Canada.
    Zhang Q; Li Z; Huang W
    Environ Res; 2021 Jan; 192():110206. PubMed ID: 32956658
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Data-driven interval credibility constrained quadratic programming model for water quality management under uncertainty.
    Zhang Q; Li Z
    J Environ Manage; 2021 Sep; 293():112791. PubMed ID: 34089957
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optimal Allocation of Water Resources and Eco-Compensation Mechanism Model Based on the Interval-Fuzzy Two-Stage Stochastic Programming Method for Tingjiang River.
    Hao N; Sun P; Yang L; Qiu Y; Chen Y; Zhao W
    Int J Environ Res Public Health; 2021 Dec; 19(1):. PubMed ID: 35010407
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simulation-optimization approach for supporting conservative water allocation under uncertainties.
    Cai Y; Li T; Zhang Y; Zhang X
    J Environ Manage; 2022 Aug; 315():115073. PubMed ID: 35525037
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A dual-randomness bi-level interval multi-objective programming model for regional water resources management.
    Xiao J; Cai Y; He Y; Xie Y; Yang Z
    J Contam Hydrol; 2021 Aug; 241():103816. PubMed ID: 33965809
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Nonlinear Inexact Two-Stage Management Model for Agricultural Water Allocation under Uncertainty Based on the Heihe River Water Diversion Plan.
    Zhang C; Yue Q; Guo P
    Int J Environ Res Public Health; 2019 May; 16(11):. PubMed ID: 31142013
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A bi-level multi-objective programming model for water resources management under compound uncertainties in Dongjiang River Basin, Greater Bay Area of China.
    Cai Y; Xiao J; He Y; Guo H; Xie Y
    J Contam Hydrol; 2022 Jun; 248():104020. PubMed ID: 35640421
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards sustainable water resources planning and pollution control: Inexact joint-probabilistic double-sided stochastic chance-constrained programming model.
    Zhang C; Guo S; Zhang F; Engel BA; Guo P
    Sci Total Environ; 2019 Mar; 657():73-86. PubMed ID: 30530221
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A two-stage fuzzy chance-constrained water management model.
    Xu J; Huang G; Li Z; Chen J
    Environ Sci Pollut Res Int; 2017 May; 24(13):12437-12454. PubMed ID: 28361398
    [TBL] [Abstract][Full Text] [Related]  

  • 12. SWAT-MODSIM-PSO optimization of multi-crop planning in the Karkheh River Basin, Iran, under the impacts of climate change.
    Fereidoon M; Koch M
    Sci Total Environ; 2018 Jul; 630():502-516. PubMed ID: 29486443
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Uncertainty analyses on the calculation of water environmental capacity by an innovative holistic method and its application to the Dongjiang River.
    Chen Q; Wang Q; Li Z; Li R
    J Environ Sci (China); 2014 Sep; 26(9):1783-90. PubMed ID: 25193825
    [TBL] [Abstract][Full Text] [Related]  

  • 14. An interval multi-objective fuzzy-interval credibility-constrained nonlinear programming model for balancing agricultural and ecological water management.
    Pan Q; Zhang C; Guo S; Sun H; Du J; Guo P
    J Contam Hydrol; 2022 Feb; 245():103958. PubMed ID: 35065315
    [TBL] [Abstract][Full Text] [Related]  

  • 15. An optimization model for water resources allocation in Dongjiang River Basin of Guangdong-Hong Kong-Macao Greater Bay Area under multiple complexities.
    Huang Y; Cai Y; Xie Y; Zhang F; He Y; Zhang P; Li B; Li B; Jia Q; Wang Y; Qi Z
    Sci Total Environ; 2022 May; 820():153198. PubMed ID: 35063514
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Bayesian-based two-stage inexact optimization method for supporting stream water quality management in the Three Gorges Reservoir region.
    Hu XH; Li YP; Huang GH; Zhuang XW; Ding XW
    Environ Sci Pollut Res Int; 2016 May; 23(9):9164-82. PubMed ID: 26832875
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A bi-level chance-constrained programming method for quantifying the effectiveness of water-trading to water-food-ecology nexus in Amu Darya River basin of Central Asia.
    Ma Y; Li YP; Huang GH
    Environ Res; 2020 Apr; 183():109229. PubMed ID: 32062484
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copula-based analysis of socio-economic impact on water quantity and quality: A case study of Yitong River, China.
    Li J; Shen Z; Cai J; Liu G; Chen L
    Sci Total Environ; 2023 Feb; 859(Pt 1):160176. PubMed ID: 36395853
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Interval two-stage stochastic programming model under uncertainty for planning emission rights trading in the Yellow River basin of China.
    Yu Q; Wu F; Shen J; Xu X
    Environ Sci Pollut Res Int; 2023 Mar; 30(14):40298-40314. PubMed ID: 36609756
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Impacts of climate change and socio-economic scenarios on flow and water quality of the Ganges, Brahmaputra and Meghna (GBM) river systems: low flow and flood statistics.
    Whitehead PG; Barbour E; Futter MN; Sarkar S; Rodda H; Caesar J; Butterfield D; Jin L; Sinha R; Nicholls R; Salehin M
    Environ Sci Process Impacts; 2015 Jun; 17(6):1057-69. PubMed ID: 25736595
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.