These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 38848694)

  • 1. Room temperature thermal rectification in suspended asymmetric graphene ribbon.
    Islam MR; Yongzheng L; Kareekunnan A; Mizuta H
    Nanotechnology; 2024 Jun; 35(36):. PubMed ID: 38848694
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Experimental study of thermal rectification in suspended monolayer graphene.
    Wang H; Hu S; Takahashi K; Zhang X; Takamatsu H; Chen J
    Nat Commun; 2017 Jun; 8():15843. PubMed ID: 28607493
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermal AND Gate Using a Monolayer Graphene Nanoribbon.
    Pal S; Puri IK
    Small; 2015 Jun; 11(24):2910-7. PubMed ID: 25689108
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermal conductivity and thermal rectification in graphene nanoribbons: a molecular dynamics study.
    Hu J; Ruan X; Chen YP
    Nano Lett; 2009 Jul; 9(7):2730-5. PubMed ID: 19499898
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrahigh Thermal Rectification in Pillared Graphene Structure with Carbon Nanotube-Graphene Intramolecular Junctions.
    Yang X; Yu D; Cao B; To AC
    ACS Appl Mater Interfaces; 2017 Jan; 9(1):29-35. PubMed ID: 27936563
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ballistic to diffusive crossover of heat flow in graphene ribbons.
    Bae MH; Li Z; Aksamija Z; Martin PN; Xiong F; Ong ZY; Knezevic I; Pop E
    Nat Commun; 2013; 4():1734. PubMed ID: 23591901
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multilayer Graphene-Based Thermal Rectifier with Interlayer Gradient Functionalization.
    Wei A; Lahkar S; Li X; Li S; Ye H
    ACS Appl Mater Interfaces; 2019 Dec; 11(48):45180-45188. PubMed ID: 31746588
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Computational Study of the Thermal Rectification Properties of a Graphene-Based Nanostructure.
    Chen J; Meng L
    ACS Omega; 2022 Aug; 7(32):28030-28040. PubMed ID: 35990432
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Phonon lateral confinement enables thermal rectification in asymmetric single-material nanostructures.
    Wang Y; Vallabhaneni A; Hu J; Qiu B; Chen YP; Ruan X
    Nano Lett; 2014 Feb; 14(2):592-6. PubMed ID: 24393070
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced Thermoelectric Performance of As-Grown Suspended Graphene Nanoribbons.
    Li QY; Feng T; Okita W; Komori Y; Suzuki H; Kato T; Kaneko T; Ikuta T; Ruan X; Takahashi K
    ACS Nano; 2019 Aug; 13(8):9182-9189. PubMed ID: 31411858
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Phononic Fano resonances in graphene nanoribbons with local defects.
    Savin AV; Kivshar YS
    Sci Rep; 2017 Jul; 7(1):4668. PubMed ID: 28680080
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Thermal rectification through the topological states of asymmetrical length armchair graphene nanoribbons heterostructures with vacancies.
    Kuo DMT
    Nanotechnology; 2023 Sep; 34(50):. PubMed ID: 37703858
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A novel solid-state thermal rectifier based on reduced graphene oxide.
    Tian H; Xie D; Yang Y; Ren TL; Zhang G; Wang YF; Zhou CJ; Peng PG; Wang LG; Liu LT
    Sci Rep; 2012; 2():523. PubMed ID: 22826801
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Thermal Rectifier and Thermal Transistor of 1T/2H MoS
    Yang X; Wang S; Wang C; Lu R; Zheng X; Zhang T; Liu M; Zheng J; Chen H
    ACS Appl Mater Interfaces; 2022 Jan; 14(3):4434-4442. PubMed ID: 35030307
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermal rectification and interfacial thermal resistance in hybrid pillared-graphene and graphene: a molecular dynamics and continuum approach.
    Yousefi F; Khoeini F; Rajabpour A
    Nanotechnology; 2020 Apr; 31(28):285707. PubMed ID: 32217831
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermal conductivity and thermal rectification in unzipped carbon nanotubes.
    Ni X; Zhang G; Li B
    J Phys Condens Matter; 2011 Jun; 23(21):215301. PubMed ID: 21555836
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Laser directed lithography of asymmetric graphene ribbons on a polydimethylsiloxane trench structure.
    Tian H; Yang Y; Xie D; Ren TL; Shu Y; Sun H; Zhou CJ; Liu X; Tao LQ; Ge J; Zhang CH; Zhang Y
    Phys Chem Chem Phys; 2013 May; 15(18):6825-30. PubMed ID: 23545537
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Thermal Conductivity of Graphene-hBN Superlattice Ribbons.
    Felix IM; Pereira LFC
    Sci Rep; 2018 Feb; 8(1):2737. PubMed ID: 29426893
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The effect of structural asymmetry on thermal rectification in nanostructures.
    Yang X; Xu J; Wu S; Yu D; Cao B
    J Phys Condens Matter; 2018 Oct; 30(43):435305. PubMed ID: 30247146
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A theoretical insight into phonon heat transport in graphene/biphenylene superlattice nanoribbons: a molecular dynamic study.
    Farzadian O; Dehaghani MZ; Kostas KV; Mashhadzadeh AH; Spitas C
    Nanotechnology; 2022 Jun; 33(35):. PubMed ID: 35613550
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.