BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 38849423)

  • 21. Relative precision of top-down attentional modulations is lower in early visual cortex compared to mid- and high-level visual areas.
    Park S; Serences JT
    J Neurophysiol; 2022 Feb; 127(2):504-518. PubMed ID: 35020526
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Signal Propagation in the Human Visual Pathways: An Effective Connectivity Analysis.
    Youssofzadeh V; Prasad G; Fagan AJ; Reilly RB; Martens S; Meaney JF; Wong-Lin K
    J Neurosci; 2015 Sep; 35(39):13501-10. PubMed ID: 26424894
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Attentional integration between anatomically distinct stimulus representations in early visual cortex.
    Haynes JD; Tregellas J; Rees G
    Proc Natl Acad Sci U S A; 2005 Oct; 102(41):14925-30. PubMed ID: 16192359
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Unique Spatial Integration in Mouse Primary Visual Cortex and Higher Visual Areas.
    Murgas KA; Wilson AM; Michael V; Glickfeld LL
    J Neurosci; 2020 Feb; 40(9):1862-1873. PubMed ID: 31949109
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Directing attention to a location in space results in retinotopic activation in primary visual cortex.
    Munneke J; Heslenfeld DJ; Theeuwes J
    Brain Res; 2008 Jul; 1222():184-91. PubMed ID: 18589405
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Attention Priority Map of Face Images in Human Early Visual Cortex.
    Mo C; He D; Fang F
    J Neurosci; 2018 Jan; 38(1):149-157. PubMed ID: 29133433
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A neural model of the temporal dynamics of figure-ground segregation in motion perception.
    Raudies F; Neumann H
    Neural Netw; 2010 Mar; 23(2):160-76. PubMed ID: 19931405
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Distinct effects of trial-driven and task Set-related control in primary visual cortex.
    Griffis JC; Elkhetali AS; Vaden RJ; Visscher KM
    Neuroimage; 2015 Oct; 120():285-297. PubMed ID: 26163806
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Ultra-high field fMRI reveals origins of feedforward and feedback activity within laminae of human ocular dominance columns.
    de Hollander G; van der Zwaag W; Qian C; Zhang P; Knapen T
    Neuroimage; 2021 Mar; 228():117683. PubMed ID: 33385565
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Attentional inhibition of visual processing in human striate and extrastriate cortex.
    Slotnick SD; Schwarzbach J; Yantis S
    Neuroimage; 2003 Aug; 19(4):1602-11. PubMed ID: 12948715
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Perceptual integration and attention in human extrastriate cortex.
    Strappini F; Galati G; Martelli M; Di Pace E; Pitzalis S
    Sci Rep; 2017 Nov; 7(1):14848. PubMed ID: 29093537
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Hemifield effects of spatial attention in early human visual cortex.
    Kraft A; Kehrer S; Hagendorf H; Brandt SA
    Eur J Neurosci; 2011 Jun; 33(12):2349-58. PubMed ID: 21545658
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Top-down coordination of local cortical state during selective attention.
    van Kempen J; Gieselmann MA; Boyd M; Steinmetz NA; Moore T; Engel TA; Thiele A
    Neuron; 2021 Mar; 109(5):894-904.e8. PubMed ID: 33406410
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Connectivity Reveals Sources of Predictive Coding Signals in Early Visual Cortex During Processing of Visual Optic Flow.
    Schindler A; Bartels A
    Cereb Cortex; 2017 May; 27(5):2885-2893. PubMed ID: 27222382
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Split of attentional resources in human visual cortex.
    Morawetz C; Holz P; Baudewig J; Treue S; Dechent P
    Vis Neurosci; 2007; 24(6):817-26. PubMed ID: 18093369
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Achromatic temporal-frequency responses of human lateral geniculate nucleus and primary visual cortex.
    Bayram A; Karahan E; BilgiƧ B; Ademoglu A; Demiralp T
    Vision Res; 2016 Oct; 127():177-185. PubMed ID: 27613997
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Neural correlates of sustained spatial attention in human early visual cortex.
    Silver MA; Ress D; Heeger DJ
    J Neurophysiol; 2007 Jan; 97(1):229-37. PubMed ID: 16971677
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Attentional load and sensory competition in human vision: modulation of fMRI responses by load at fixation during task-irrelevant stimulation in the peripheral visual field.
    Schwartz S; Vuilleumier P; Hutton C; Maravita A; Dolan RJ; Driver J
    Cereb Cortex; 2005 Jun; 15(6):770-86. PubMed ID: 15459076
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Object Selection by Automatic Spreading of Top-Down Attentional Signals in V1.
    Ekman M; Roelfsema PR; de Lange FP
    J Neurosci; 2020 Nov; 40(48):9250-9259. PubMed ID: 33087475
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contribution of feedforward, lateral and feedback connections to the classical receptive field center and extra-classical receptive field surround of primate V1 neurons.
    Angelucci A; Bressloff PC
    Prog Brain Res; 2006; 154():93-120. PubMed ID: 17010705
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.