BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 38849491)

  • 1. Study on the ability of indoor plants to absorb and purify benzene pollution.
    Li D; Wang H; Gao Q; Lu M
    Sci Rep; 2024 Jun; 14(1):13169. PubMed ID: 38849491
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Enhancing mixed toluene and formaldehyde pollutant removal by Zamioculcas zamiifolia combined with Sansevieria trifasciata and its CO
    Ullah H; Treesubsuntorn C; Thiravetyan P
    Environ Sci Pollut Res Int; 2021 Jan; 28(1):538-546. PubMed ID: 32812163
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experimental study on the purification capacity of potted plants on low-concentration carbon monoxide in indoor environment.
    Zhu J; Liu J; He X; Wang L; Liu X; Yang J; Sun H; Azhar N; Oduro NB
    Environ Sci Pollut Res Int; 2024 Jan; 31(4):6316-6331. PubMed ID: 38146024
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Plant-based remediation of air pollution: A review.
    Han Y; Lee J; Haiping G; Kim KH; Wanxi P; Bhardwaj N; Oh JM; Brown RJC
    J Environ Manage; 2022 Jan; 301():113860. PubMed ID: 34626947
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Novel insights into indoor air purification capability of microalgae: characterization using multiple air quality parameters and comparison with common methods.
    Wang Q; Li L; Hong Y; Zhai Q; He Y
    Environ Sci Pollut Res Int; 2023 Apr; 30(17):49829-49839. PubMed ID: 36787060
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Phytoremediation of formaldehyde by the stems of Epipremnum aureum and Rohdea japonica.
    Zuo L; Wu D; Yu L; Yuan Y
    Environ Sci Pollut Res Int; 2022 Feb; 29(8):11445-11454. PubMed ID: 34537936
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the antioxidative defense response of selected indoor plants against benzene and formaldehyde.
    Khan T; Shah SM; Khan SA; Hassan A; Khan AR; Akhtar G; Imtiaz H; Sajjad Y
    Environ Sci Pollut Res Int; 2023 Sep; 30(44):99273-99283. PubMed ID: 37322395
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Plant leaves as indoor air passive samplers for volatile organic compounds (VOCs).
    Wetzel TA; Doucette WJ
    Chemosphere; 2015 Mar; 122():32-37. PubMed ID: 25434272
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uptake of toluene and ethylbenzene by plants: removal of volatile indoor air contaminants.
    Sriprapat W; Suksabye P; Areephak S; Klantup P; Waraha A; Sawattan A; Thiravetyan P
    Ecotoxicol Environ Saf; 2014 Apr; 102():147-51. PubMed ID: 24530730
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Transport and removal mechanism of benzene by Tradescantia zebrina Bosse and Epipremnum aureum (Linden ex André) G.S. Bunting in air-plant-solution system.
    Li X; Hu Y; Li D; Su Y
    Environ Sci Pollut Res Int; 2023 Apr; 30(20):58282-58294. PubMed ID: 36977874
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Simultaneous removal of formaldehyde and benzene in indoor air with a combination of sorption- and decomposition-type air filters.
    Sekine Y; Fukuda M; Takao Y; Ozano T; Sakuramoto H; Wang KW
    Environ Technol; 2011 Dec; 33(15-16):1983-9. PubMed ID: 22439587
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Vegetal fiber paper matrix impregnated with silica gel for benzene removal.
    Wu X; Ge T; Dai Y; Wang R
    Indoor Air; 2019 Nov; 29(6):943-955. PubMed ID: 31444988
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Assessment of filtration efficiency and physiological responses of selected plant species to indoor air pollutants (toluene and 2-ethylhexanol) under chamber conditions.
    Hörmann V; Brenske KR; Ulrichs C
    Environ Sci Pollut Res Int; 2018 Jan; 25(1):447-458. PubMed ID: 29043589
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Relationship between leaf dust retention capacity and leaf microstructure of six common tree species for campus greening.
    Tan XY; Liu L; Wu DY
    Int J Phytoremediation; 2022; 24(11):1213-1221. PubMed ID: 35040734
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Plants for Sustainable Improvement of Indoor Air Quality.
    Brilli F; Fares S; Ghirardo A; de Visser P; Calatayud V; Muñoz A; Annesi-Maesano I; Sebastiani F; Alivernini A; Varriale V; Menghini F
    Trends Plant Sci; 2018 Jun; 23(6):507-512. PubMed ID: 29681504
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Does plant species selection in functional active green walls influence VOC phytoremediation efficiency?
    Irga PJ; Pettit T; Irga RF; Paull NJ; Douglas ANJ; Torpy FR
    Environ Sci Pollut Res Int; 2019 May; 26(13):12851-12858. PubMed ID: 30891698
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Analysis of indoor concentrations of benzene using an air-quality model.
    Bouhamra WS; Elkilani AS; Raheem MY
    Arch Environ Health; 2000; 55(3):201-9. PubMed ID: 10908104
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterisation of urban inhalation exposures to benzene, formaldehyde and acetaldehyde in the European Union: comparison of measured and modelled exposure data.
    Bruinen de Bruin Y; Koistinen K; Kephalopoulos S; Geiss O; Tirendi S; Kotzias D
    Environ Sci Pollut Res Int; 2008 Jul; 15(5):417-30. PubMed ID: 18491156
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Phytoremediation of indoor formaldehyde by plants and plant material.
    Khalifa AA; Khan E; Akhtar MS
    Int J Phytoremediation; 2023; 25(4):493-504. PubMed ID: 35771032
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small scale spatial gradients of outdoor and indoor benzene in proximity of an integrated steel plant.
    Licen S; Tolloi A; Briguglio S; Piazzalunga A; Adami G; Barbieri P
    Sci Total Environ; 2016 May; 553():524-531. PubMed ID: 26930323
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.