These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
210 related articles for article (PubMed ID: 38849739)
1. Mitigation of drought stress in maize and sorghum by humic acid: differential growth and physiological responses. Abu-Ria ME; Elghareeb EM; Shukry WM; Abo-Hamed SA; Ibraheem F BMC Plant Biol; 2024 Jun; 24(1):514. PubMed ID: 38849739 [TBL] [Abstract][Full Text] [Related]
2. Sulfur-enriched leonardite and humic acid soil amendments enhance tolerance to drought and phosphorus deficiency stress in maize (Zea mays L.). Kaya C; Şenbayram M; Akram NA; Ashraf M; Alyemeni MN; Ahmad P Sci Rep; 2020 Apr; 10(1):6432. PubMed ID: 32286357 [TBL] [Abstract][Full Text] [Related]
3. Elevated CO2 increases water use efficiency by sustaining photosynthesis of water-limited maize and sorghum. Allen LH; Kakani VG; Vu JC; Boote KJ J Plant Physiol; 2011 Nov; 168(16):1909-18. PubMed ID: 21676489 [TBL] [Abstract][Full Text] [Related]
4. Effect of strigolactone on growth, photosynthetic efficiency, antioxidant activity, and osmolytes accumulation in different maize ( Luqman M; Shahbaz M; Maqsood MF; Farhat F; Zulfiqar U; Siddiqui MH; Masood A; Aqeel M; Haider FU Plant Signal Behav; 2023 Dec; 18(1):2262795. PubMed ID: 37767863 [TBL] [Abstract][Full Text] [Related]
5. Combined seed and foliar pre-treatments with exogenous methyl jasmonate and salicylic acid mitigate drought-induced stress in maize. Tayyab N; Naz R; Yasmin H; Nosheen A; Keyani R; Sajjad M; Hassan MN; Roberts TH PLoS One; 2020; 15(5):e0232269. PubMed ID: 32357181 [TBL] [Abstract][Full Text] [Related]
6. Effects of Nitroxin and arbuscular mycorrhizal fungi on the agro-physiological traits and grain yield of sorghum (Sorghum bicolor L.) under drought stress conditions. Kamali S; Mehraban A PLoS One; 2020; 15(12):e0243824. PubMed ID: 33370318 [TBL] [Abstract][Full Text] [Related]
7. Ameliorative effect of melatonin improves drought tolerance by regulating growth, photosynthetic traits and leaf ultrastructure of maize seedlings. Ahmad S; Muhammad I; Wang GY; Zeeshan M; Yang L; Ali I; Zhou XB BMC Plant Biol; 2021 Aug; 21(1):368. PubMed ID: 34384391 [TBL] [Abstract][Full Text] [Related]
8. Leaf photosynthesis and carbohydrates of CO₂-enriched maize and grain sorghum exposed to a short period of soil water deficit during vegetative development. Kakani VG; Vu JC; Allen LH; Boote KJ J Plant Physiol; 2011 Dec; 168(18):2169-76. PubMed ID: 21835494 [TBL] [Abstract][Full Text] [Related]
9. Exogenous application of 5-NGS increased osmotic stress resistance by improving leaf photosynthetic physiology and antioxidant capacity in maize. Yang D; Gao Z; Liu Y; Li Q; Yang J; Wang Y; Wang M; Xie T; Zhang M; Sun H PeerJ; 2024; 12():e17474. PubMed ID: 38818454 [TBL] [Abstract][Full Text] [Related]
10. Inter-subspecies diversity of maize to drought stress with physio-biochemical, enzymatic and molecular responses. Eskikoy G; Kutlu I PeerJ; 2024; 12():e17931. PubMed ID: 39184382 [TBL] [Abstract][Full Text] [Related]
11. Efficacy of Zn-Aspartate in comparison with ZnSO4 and L-Aspartate in amelioration of drought stress in maize by modulating antioxidant defence; osmolyte accumulation and photosynthetic attributes. Ali Q; Mazhar MW; Ishtiaq M; Hussain AI; Bhatti KH; Maqbool M; Hussain T; Khanum H; Sardar T; Mazhar M PLoS One; 2021; 16(12):e0260662. PubMed ID: 34941898 [TBL] [Abstract][Full Text] [Related]
12. A leucine-rich repeat-receptor-like kinase gene SbER2-1 from sorghum (Sorghum bicolor L.) confers drought tolerance in maize. Li H; Han X; Liu X; Zhou M; Ren W; Zhao B; Ju C; Liu Y; Zhao J BMC Genomics; 2019 Oct; 20(1):737. PubMed ID: 31615416 [TBL] [Abstract][Full Text] [Related]
13. Combined ability of salicylic acid and spermidine to mitigate the individual and interactive effects of drought and chromium stress in maize (Zea mays L.). Naz R; Sarfraz A; Anwar Z; Yasmin H; Nosheen A; Keyani R; Roberts TH Plant Physiol Biochem; 2021 Feb; 159():285-300. PubMed ID: 33418188 [TBL] [Abstract][Full Text] [Related]
14. Effects of nitrogen fertilization and drought on hydrocyanic acid accumulation and morpho-physiological parameters of sorghums. Shehab AESAE; Guo Y J Sci Food Agric; 2021 Jun; 101(8):3355-3365. PubMed ID: 33227149 [TBL] [Abstract][Full Text] [Related]
15. Humic acid improves the physiological and photosynthetic characteristics of millet seedlings under drought stress. Shen J; Guo MJ; Wang YG; Yuan XY; Wen YY; Song XE; Dong SQ; Guo PY Plant Signal Behav; 2020 Aug; 15(8):1774212. PubMed ID: 32552556 [TBL] [Abstract][Full Text] [Related]
16. Actinobacterium isolated from a semi-arid environment improves the drought tolerance in maize (Zea mays L.). Selim S; Hassan YM; Saleh AM; Habeeb TH; AbdElgawad H Plant Physiol Biochem; 2019 Sep; 142():15-21. PubMed ID: 31252370 [TBL] [Abstract][Full Text] [Related]
17. Application of candidate endophytic fungi isolated from extreme desert adapted trees to mitigate the adverse effects of drought stress on maize (Zea mays L.). Bakhshi S; Eshghi S; Banihashemi Z Plant Physiol Biochem; 2023 Sep; 202():107961. PubMed ID: 37639983 [TBL] [Abstract][Full Text] [Related]
18. Physio-morphological, biochemical, and anatomical traits of drought-tolerant and susceptible sorghum cultivars under pre- and post-anthesis drought. Akman H; Zhang C; Ejeta G Physiol Plant; 2021 Jun; 172(2):912-921. PubMed ID: 33063861 [TBL] [Abstract][Full Text] [Related]
19. Overexpression of ZmSUS1 increased drought resistance of maize (Zea mays L.) by regulating sucrose metabolism and soluble sugar content. Xiao N; Ma H; Wang W; Sun Z; Li P; Xia T Planta; 2024 Jan; 259(2):43. PubMed ID: 38277077 [TBL] [Abstract][Full Text] [Related]
20. Effect of progressive drought stress on growth, leaf gas exchange, and antioxidant production in two maize cultivars. Anjum SA; Tanveer M; Ashraf U; Hussain S; Shahzad B; Khan I; Wang L Environ Sci Pollut Res Int; 2016 Sep; 23(17):17132-41. PubMed ID: 27215981 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]