These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 38849952)

  • 1. Inhibition changes across the lifespan: experimental evidence from the Stroop task.
    Forte G; Troisi G; Favieri F; Casagrande M
    BMC Psychol; 2024 Jun; 12(1):336. PubMed ID: 38849952
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Virtual Apartment-Based Stroop for assessing distractor inhibition in healthy aging.
    Parsons TD; Barnett M
    Appl Neuropsychol Adult; 2019; 26(2):144-154. PubMed ID: 28976213
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cognitive control across the lifespan: Congruency effects reveal divergent developmental trajectories.
    Erb CD; Germine L; Hartshorne JK
    J Exp Psychol Gen; 2023 Nov; 152(11):3285-3291. PubMed ID: 37289513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Stroop interference and negative priming (NP) suppression in normal aging.
    Mayas J; Fuentes LJ; Ballesteros S
    Arch Gerontol Geriatr; 2012; 54(2):333-8. PubMed ID: 21215468
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The role of cognition for different stages of visuomotor adaptation in younger and older adults.
    Simon A; Bock O
    Hum Mov Sci; 2017 Apr; 52():215-222. PubMed ID: 28285156
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effect of Normal Aging and of Mild Cognitive Impairment on Event-Related Potentials to a Stroop Color-Word Task.
    Ramos-Goicoa M; Galdo-Álvarez S; Díaz F; Zurrón M
    J Alzheimers Dis; 2016 Apr; 52(4):1487-501. PubMed ID: 27079705
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inhibition in aging: What is preserved? What declines? A meta-analysis.
    Rey-Mermet A; Gade M
    Psychon Bull Rev; 2018 Oct; 25(5):1695-1716. PubMed ID: 29019064
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The temporal dynamics of the Stroop effect from childhood to young and older adulthood.
    Ménétré E; Laganaro M
    PLoS One; 2023; 18(3):e0256003. PubMed ID: 36996048
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Age-related increases in Stroop interference: delineation of general slowing based on behavioral and white matter analyses.
    Wolf D; Zschutschke L; Scheurich A; Schmitz F; Lieb K; Tüscher O; Fellgiebel A
    Hum Brain Mapp; 2014 May; 35(5):2448-58. PubMed ID: 24038539
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reduced pain inhibition is associated with reduced cognitive inhibition in healthy aging.
    Marouf R; Caron S; Lussier M; Bherer L; Piché M; Rainville P
    Pain; 2014 Mar; 155(3):494-502. PubMed ID: 24280618
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Relationship of regular physical activity with neuroelectric indices of interference processing in young adults.
    Aly M; Kojima H
    Psychophysiology; 2020 Dec; 57(12):e13674. PubMed ID: 33460156
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Brain oscillations in cognitive control: A cross-sectional study with a spatial stroop task.
    Tafuro A; Ambrosini E; Puccioni O; Vallesi A
    Neuropsychologia; 2019 Oct; 133():107190. PubMed ID: 31513806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Some further clarifications on age-related differences in Stroop interference.
    Augustinova M; Clarys D; Spatola N; Ferrand L
    Psychon Bull Rev; 2018 Apr; 25(2):767-774. PubMed ID: 29372512
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The neural bases of proactive and reactive control processes in normal aging.
    Manard M; François S; Phillips C; Salmon E; Collette F
    Behav Brain Res; 2017 Mar; 320():504-516. PubMed ID: 27784627
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of reaction time variability and age on brain activity during Stroop task performance.
    Tam A; Luedke AC; Walsh JJ; Fernandez-Ruiz J; Garcia A
    Brain Imaging Behav; 2015 Sep; 9(3):609-18. PubMed ID: 25280971
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Incremental rate of prefrontal oxygenation determines performance speed during cognitive Stroop test: the effect of ageing.
    Endo K; Liang N; Idesako M; Ishii K; Matsukawa K
    J Physiol Sci; 2018 Nov; 68(6):807-824. PubMed ID: 29460037
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactive effects of working memory and trial history on Stroop interference in cognitively healthy aging.
    Aschenbrenner AJ; Balota DA
    Psychol Aging; 2015 Mar; 30(1):1-8. PubMed ID: 25602489
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Compensatory Neural Responses to Cognitive Fatigue in Young and Older Adults.
    Babu Henry Samuel I; Wang C; Burke SE; Kluger B; Ding M
    Front Neural Circuits; 2019; 13():12. PubMed ID: 30853901
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cerebral Oxygenation Reserve: The Relationship Between Physical Activity Level and the Cognitive Load During a Stroop Task in Healthy Young Males.
    Goenarjo R; Bosquet L; Berryman N; Metier V; Perrochon A; Fraser SA; Dupuy O
    Int J Environ Res Public Health; 2020 Feb; 17(4):. PubMed ID: 32098221
    [No Abstract]   [Full Text] [Related]  

  • 20. Exploring Effects of Age on Conflict Processing in the Light of Practice in a Large-Scale Dataset.
    Reiber F; Ulrich R
    Exp Aging Res; 2024; 50(4):422-442. PubMed ID: 37258228
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.