These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

143 related articles for article (PubMed ID: 38850231)

  • 1. Accelerating Molecular Docking using Machine Learning Methods.
    Bande AY; Baday S
    Mol Inform; 2024 Jun; 43(6):e202300167. PubMed ID: 38850231
    [TBL] [Abstract][Full Text] [Related]  

  • 2. SCORCH: Improving structure-based virtual screening with machine learning classifiers, data augmentation, and uncertainty estimation.
    McGibbon M; Money-Kyrle S; Blay V; Houston DR
    J Adv Res; 2023 Apr; 46():135-147. PubMed ID: 35901959
    [TBL] [Abstract][Full Text] [Related]  

  • 3. V-Dock: Fast Generation of Novel Drug-like Molecules Using Machine-Learning-Based Docking Score and Molecular Optimization.
    Choi J; Lee J
    Int J Mol Sci; 2021 Oct; 22(21):. PubMed ID: 34769065
    [TBL] [Abstract][Full Text] [Related]  

  • 4. MILCDock: Machine Learning Enhanced Consensus Docking for Virtual Screening in Drug Discovery.
    Morris CJ; Stern JA; Stark B; Christopherson M; Della Corte D
    J Chem Inf Model; 2022 Nov; 62(22):5342-5350. PubMed ID: 36342217
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Artificial intelligence-enabled virtual screening of ultra-large chemical libraries with deep docking.
    Gentile F; Yaacoub JC; Gleave J; Fernandez M; Ton AT; Ban F; Stern A; Cherkasov A
    Nat Protoc; 2022 Mar; 17(3):672-697. PubMed ID: 35121854
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine Learning Boosted Docking (HASTEN): An Open-source Tool To Accelerate Structure-based Virtual Screening Campaigns.
    Kalliokoski T
    Mol Inform; 2021 Sep; 40(9):e2100089. PubMed ID: 34060239
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Task-Specific Scoring Functions for Predicting Ligand Binding Poses and Affinity and for Screening Enrichment.
    Ashtawy HM; Mahapatra NR
    J Chem Inf Model; 2018 Jan; 58(1):119-133. PubMed ID: 29190087
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Development of Ligand-based Big Data Deep Neural Network Models for Virtual Screening of Large Compound Libraries.
    Xiao T; Qi X; Chen Y; Jiang Y
    Mol Inform; 2018 Nov; 37(11):e1800031. PubMed ID: 29882343
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Impact of Supervised Learning Methods in Ultralarge High-Throughput Docking.
    Cavasotto CN; Di Filippo JI
    J Chem Inf Model; 2023 Apr; 63(8):2267-2280. PubMed ID: 37036491
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Boosted neural networks scoring functions for accurate ligand docking and ranking.
    Ashtawy HM; Mahapatra NR
    J Bioinform Comput Biol; 2018 Apr; 16(2):1850004. PubMed ID: 29495922
    [TBL] [Abstract][Full Text] [Related]  

  • 11. GPCRLigNet: rapid screening for GPCR active ligands using machine learning.
    Remington JM; McKay KT; Beckage NB; Ferrell JB; Schneebeli ST; Li J
    J Comput Aided Mol Des; 2023 Mar; 37(3):147-156. PubMed ID: 36840893
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning in computational docking.
    Khamis MA; Gomaa W; Ahmed WF
    Artif Intell Med; 2015 Mar; 63(3):135-52. PubMed ID: 25724101
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of machine learning approaches for novel drug discovery.
    Lima AN; Philot EA; Trossini GH; Scott LP; Maltarollo VG; Honorio KM
    Expert Opin Drug Discov; 2016; 11(3):225-39. PubMed ID: 26814169
    [TBL] [Abstract][Full Text] [Related]  

  • 14. DENVIS: Scalable and High-Throughput Virtual Screening Using Graph Neural Networks with Atomic and Surface Protein Pocket Features.
    Krasoulis A; Antonopoulos N; Pitsikalis V; Theodorakis S
    J Chem Inf Model; 2022 Oct; 62(19):4642-4659. PubMed ID: 36154119
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Protein-Ligand Docking in the Machine-Learning Era.
    Yang C; Chen EA; Zhang Y
    Molecules; 2022 Jul; 27(14):. PubMed ID: 35889440
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Machine learning accelerates pharmacophore-based virtual screening of MAO inhibitors.
    Cieślak M; Danel T; Krzysztyńska-Kuleta O; Kalinowska-Tłuścik J
    Sci Rep; 2024 Apr; 14(1):8228. PubMed ID: 38589405
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Using machine learning to improve ensemble docking for drug discovery.
    Chandak T; Mayginnes JP; Mayes H; Wong CF
    Proteins; 2020 Oct; 88(10):1263-1270. PubMed ID: 32401384
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Lean-Docking: Exploiting Ligands' Predicted Docking Scores to Accelerate Molecular Docking.
    Berenger F; Kumar A; Zhang KYJ; Yamanishi Y
    J Chem Inf Model; 2021 May; 61(5):2341-2352. PubMed ID: 33861591
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The Development of Target-Specific Machine Learning Models as Scoring Functions for Docking-Based Target Prediction.
    Nogueira MS; Koch O
    J Chem Inf Model; 2019 Mar; 59(3):1238-1252. PubMed ID: 30802041
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Computational predictive models for P-glycoprotein inhibition of in-house chalcone derivatives and drug-bank compounds.
    Ngo TD; Tran TD; Le MT; Thai KM
    Mol Divers; 2016 Nov; 20(4):945-961. PubMed ID: 27431577
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.